1.Role of Extracellular Signal-Regulated Kinase 1/2 and Reactive Oxygen Species in Toll-Like Receptor 2-Mediated Dual-Specificity Phosphatase 4 Expression.
Yeungnam University Journal of Medicine 2013;30(1):10-16
BACKGROUND: Toll-like receptors (TLRs) are well-known pattern recognition receptors. Among the 13 TLRs, TLR2 is the most known receptor for immune response. It activates mitogen-activated protein kinases (MAPKs), which are counterbalanced by MAPK phosphatases [MKPs or dual-specificity phosphatases (DUSPs)]. However, the regulatory mechanism of DUSPs is still unclear. In this study, the effect of a TLR2 ligand (TLR2L, Pam3CSK4) on DUSP4 expression in Raw264.7 cells was demonstrated. METHODS: A Raw264.7 mouse macrophage cell line was cultured in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and 1% antibiotics (100 U/mL penicillin and 100 g/mL streptomycin) at 37degrees C in 5% CO2. TLR2L (Pam3CSK4)-mediated DUSP4 expressions were confirmed with RT-PCR and western blot analysis. In addition, the detection of reactive oxygen species (ROS) was measured with lucigenin assay. RESULTS: Pam3CSK4 induced the expression of DUSP1, 2, 4, 5 and 16. The DUSP4 expression was also increased by TLR4 and 9 agonists (lipopolysaccharide and CpG ODN, respectively). Pam3CSK4 also induced ERK1/2 phosphorylation and ROS production, and the Pam3CSK4-induced DUSP4 expression was decreased by ERK1/2 (U0126) and ROS (DPI) inhibitors. U0126 suppressed the ROS production by Pam3CSK4. CONCLUSION: Pam3CSK4-mediated DUSP4 expression is regulated by ERK1/2 and ROS. This finding suggests the physiological importance of DUSP4 in TLR2-mediated immune response.
Acridines
;
Animals
;
Anti-Bacterial Agents
;
Blotting, Western
;
Butadienes
;
Cell Line
;
Dual-Specificity Phosphatases
;
Macrophages
;
Mice
;
Mitogen-Activated Protein Kinase Phosphatases
;
Mitogen-Activated Protein Kinases
;
Nitriles
;
Penicillins
;
Phosphorylation
;
Phosphotransferases
;
Reactive Oxygen Species
;
Receptors, Pattern Recognition
;
Toll-Like Receptors
2.Total flavonoids of Drynariae Rhizoma regulates ER-p38 MAPK signaling pathway to improve scopolamine-induced learning and memory impairments in model mice.
De-Ping ZHAO ; Da-Long LI ; Yan-Hang ZHANG ; Yue CUI ; Hong-Dan XU ; Bo YANG ; Xia LEI ; Ning ZHANG
China Journal of Chinese Materia Medica 2021;46(22):5922-5929
This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERβ expression was detected by immunohistochemistry, and the expression levels of ERβ and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERβ, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERβ and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.
Animals
;
Flavonoids
;
Hippocampus
;
Maze Learning
;
Mice
;
Polypodiaceae
;
Receptors, Estrogen
;
Scopolamine/toxicity*
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases/genetics*
3.Development and functional verification of CAR-T cells targeting CLL-1.
Xiao CHAI ; Xin JIN ; Min Feng ZHAO
Chinese Journal of Hematology 2022;43(2):102-106
Objective: To explore the development of a CAR-T cells targeting CLL-1 and verify its function. Methods: The expression levels of CLL-1 targets in cell lines and primary cells were detected by flow cytometry. A CLL-1 CAR vector was constructed, and the corresponding lentivirus was prepared. After infection and activation of T cells, CAR-T cells targeting CLL-1 were produced and their function was verified in vitro and in vivo. Results: CLL-1 was expressed in acute myeloid leukemia (AML) cell lines and primary AML cells. The transduction rate of the prepared CAR T cells was 77.82%. In AML cell lines and AML primary cells, CLL-1-targeting CAR-T cells significantly and specifically killed CLL-1-expressing cells. Compared to untransduced T cells, CAR-T cells killed target cells and secreted inflammatory cytokines, such as interleukin-6 and interferon-γ, at significantly higher levels (P<0.001) . In an in vivo human xenograft mouse model of AML, CLL-1 CAR-T cells also exhibited potent antileukemic activity and induced prolonged mouse survival compared with untransduced T cells [not reached vs 22 days (95%CI 19-24 days) , P=0.002]. Conclusion: CAR-T cells targeting CLL-1 have been successfully produced and have excellent functions.
Animals
;
Cell Line, Tumor
;
Cytokines
;
Humans
;
Immunotherapy, Adoptive
;
Lectins, C-Type
;
Leukemia, Myeloid, Acute/metabolism*
;
Mice
;
Receptors, Mitogen
;
T-Lymphocytes
4.Advances in N-methyl-D-aspartate Receptor Signaling Pathway and Mechanism of the Pathway-mediated Apoptosis.
Yi-Xiao HAN ; Ya-Zhu HOU ; Hai-Feng YAN ; Shuai WANG ; Xian-Liang WANG ; Jing-Yuan MAO
Acta Academiae Medicinae Sinicae 2022;44(1):149-157
N-methyl-D-aspartate receptor (NMDAR),an important ionic glutamate receptor and a ligand and voltage-gated ion channel characterized by complex composition and functions and wide distribution,plays a key role in the pathological and physiological process of diseases or stress states.NMDAR can mediate apoptosis through different pathways such as mitochondrial and endoplasmic reticulum damage,production of reactive oxygen species and peroxynitrite,and activation of mitogen-activated protein kinase and calpain.This paper reviews the structure,distribution,and biological characteristics of NMDAR and the mechanisms of NMDAR-mediated apoptosis.
Apoptosis
;
Humans
;
Mitogen-Activated Protein Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Signal Transduction
5.Discoidin domain receptors (DDRs) expression in pathological scar fibroblast formation.
Yu-Zhi JIANG ; Xin XING ; Jun-Hui WEN ; Chun-Yu XUE ; Jing-De ZHANG ; Ming-li ZHANG
Chinese Journal of Plastic Surgery 2007;23(2):134-136
OBJECTIVETo explore the role of discoidin domain receptors (DDRs) in the formation of the keloid.
METHODSThe real-time quantitative PCR was used to compare the DDRs expression in the keloids and normal fibroblasts.
RESULTSThe level of DDR1 expression was significantly higher in keloid than in normal fibroblast (20.98 vs 4.2, P <0.01; 7.9 vs 4.23, P <0.05). The level of DDR1 expression in keloid was also higher significantly than that in hypertropic scar (20.98 vs 7.9, P < 0.01). However, the level of DDR2 expression was somewhat higher in keloid than in normal fibroblasts, the difference seemed not to be significantly in probability (358, 332 vs 278, P > 0.05).
CONCLUSIONSDDRs may exert effect on keloid cell behaviours.
Cell Proliferation ; Cells, Cultured ; Cicatrix ; metabolism ; pathology ; Discoidin Domain Receptors ; Female ; Fibroblasts ; metabolism ; Humans ; Male ; Receptor Protein-Tyrosine Kinases ; metabolism ; Receptors, Mitogen ; metabolism
6.Expression of discoidin domain receptor 2 in different phases of alcoholic liver fibrosis in a rat model.
Hui-min LIU ; Ming YAN ; Xi-hong ZHANG ; Li LIU ; Nan SHANG ; Hai-tao ZHANG
Chinese Journal of Hepatology 2008;16(6):425-429
OBJECTIVETo observe the expressions of discoidin domain receptor 2 (DDR2) in different phases of alcoholic liver fibrosis (ALF) in a rat model and to study the possible association between DDR2 and collagen deposition in ALF.
METHODSAfter an ALF rat model was established by alcohol gastrogavage and an olive oil diet, the liver histopathology was observed in different phases of the development of fibrosis. The expressions of DDR2 mRNA and protein were also detected by RT-PCR and Western blot respectively to make a dependability analysis with the index of ALF.
RESULTS(1) The expressions of DDR2 mRNA and protein increased gradually along with ALF aggravation. In the normal control group, they were respectively 1.023+/-0.132 and 0.321+/-0.027; in the model 1 group (week 12) they were 3.644+/-1.686, 0.476+/-0.046; in the model 2 group (week 16) they were 8.337+/-2.387, 0.738+/-0.057; and in the model 3 group (week 20) they were 15.730+/-4.569, 0.997+/-0.049. The differences of DDR2 mRNA (F = 21.74, P less than 0.01) and protein (F = 10.38, P less than 0.01) among these four groups were significant. (2) The expressions of DDR2 had a positive correlation with collagen type I, III, IV contents and the serum index of ALF, especially with type III and IV collagen and serum hexadecenoic acid.
CONCLUSIONThe expression of DDR2 in this ALF model correlates closely with collagen deposition in the liver, suggesting that it may play an important role in ALF pathogenesis.
Animals ; Collagen ; metabolism ; Discoidin Domain Receptors ; Disease Models, Animal ; Liver Cirrhosis, Alcoholic ; metabolism ; pathology ; Male ; Rats ; Rats, Wistar ; Receptor Protein-Tyrosine Kinases ; metabolism ; Receptors, Mitogen ; metabolism
7.Dexamethasone Inhibits Interleukin-1beta-Induced Matrix Metalloproteinase-9 Expression in Cochlear Cells.
Clinical and Experimental Otorhinolaryngology 2014;7(3):175-180
OBJECTIVES: To investigate the effect of interleukin (IL)-1beta on matrix metalloproteinase (MMP)-9 expression in cochlea and regulation of IL-1beta-mediated MMP-9 expression by dexamethasone and the molecular and signaling mechanisms involved. METHODS: House ear institute-organ of Corti 1 (HEI-OC1) cells were used and exposed to IL-1beta with/without dexamethasone. Glucocorticoid receptor antagonist, RU486, was used to see the role of dexamethasone. PD98059 (an extracellular signal-regulated kinases [ERKs] inhibitor), SB203580 (a p38 mitogen-activated protein kinases [MAPK] inhibitor), SP600125 (a c-Jun N-terminal kinase [JNK] inhibitor) were also used to see the role of MAPKs signaling pathway(s) in IL-1beta-induced MMP-9 expression in HEI-OC1 cells. Reverse transcription-polymerase chain reaction and gelatin zymography were used to measure mRNA expression level of MMP-9 and activity of MMP-9, respectively. RESULTS: Treatment with IL-1beta-induced the expression of MMP-9 in a dose- and time-dependent manner. IL-1beta (1 ng/mL)-induced MMP-9 expression was inhibited by dexamethasone. Interestingly, p38 MAPK inhibitor, SB203580, significantly inhibited IL-1beta-induced MMP-9 mRNA and MMP-9 activity. However, inhibition of JNKs and ERKs had no effect on the IL-1beta-induced MMP-9 expression. CONCLUSION: These results suggest that the pro-inflammatory cytokine IL-1beta strongly induces MMP-9 expression via activation of p38 MAPK signaling pathway in HEI-OC1 cells and the induction was inhibited by dexamethasone.
Cochlea
;
Dexamethasone*
;
Ear
;
Extracellular Signal-Regulated MAP Kinases
;
Gelatin
;
Interleukin-1beta
;
Interleukins
;
JNK Mitogen-Activated Protein Kinases
;
Matrix Metalloproteinase 9*
;
Mifepristone
;
p38 Mitogen-Activated Protein Kinases
;
Receptors, Glucocorticoid
;
RNA, Messenger
8.Mycobacterium tuberculosis Induces the Production of Tumor Necrosis Factor-alpha, Interleukin-6, and CXCL8 in Pulmonary Epithelial Cells Through Reactive Oxygen Species-dependent Mitogen-activated Protein Kinase Activation.
Hye Mi LEE ; Dong Min SHIN ; Eun Kyeong JO
Journal of Bacteriology and Virology 2009;39(1):1-10
Upon contact with airway epithelial cells, mycobacteria activate several signal transduction events that are required for induction of inflammatory cytokines/chemokines. In this study, we found that Mycobacterium tuberculosis (Mtb)induced reactive oxygen species (ROS) production is essential for the expression of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and CXC-chemokine ligand (CXCL) 8 through the activation of mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK] in A549 cells representing alveolar epithelial cells. We observed that Mtb rapidly enhanced ROS production after stimulation in a toll-like receptor (TLR) 2-dependent manner. In addition, Mtb triggered ERK1/2 and p38 MAPK signaling pathways which were dependent on ROS generation in A549 cells. Moreover, Mtb stimulation significantly increased the secretion of TNF-alpha, IL-6, and CXCL8 over that in untreated controls. Pretreatment of A549 cells with the antioxidant, N-acetylcysteine and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, diphenylene iodonium, substantially inhibited Mtb-induced production of TNF-alpha, IL-6, and CXCL8. Studies using inhibitors selective for ERK1/2 and p38 MAPK pathways showed that both pathways play an essential role in the induction of TNF-alpha, IL-6, and CXCL8 at transcriptional levels in A549 cells. Collectively, our findings indicate the critical role of TLR2-dependent ROS in the Mtb-induced inflammatory cytokine/chemokine production in alveolar epithelial cells through MAPK-dependent signaling pathways.
Acetylcysteine
;
Epithelial Cells
;
Interleukin-6
;
Interleukins
;
Mitogen-Activated Protein Kinases
;
Mycobacterium
;
Mycobacterium tuberculosis
;
NADP
;
Onium Compounds
;
Oxidoreductases
;
Oxygen
;
p38 Mitogen-Activated Protein Kinases
;
Phosphotransferases
;
Protein Kinases
;
Reactive Oxygen Species
;
Signal Transduction
;
Toll-Like Receptors
;
Tumor Necrosis Factor-alpha
9.The effects of DR2 on myocardial ischemic postconditioning and its underlying mechanisms.
Hong-Zhu LI ; Jun GAO ; Xiao-Min HAO ; Li-Min ZHANG ; Jun-Ting CHEN
Chinese Journal of Applied Physiology 2014;30(4):301-305
OBJECTIVETo study the effects of dopamin receptors-2 (DR2) on myocardial ischemic postconditioning and explore its underlying mechanisms.
METHODSThe myocardial ischemic postconditioning (PC) model was established in cultured primary rat neonatal cardiomyocytes which were then randomly assigned in the following groups: Nomial control group, Isehemia/reperfusion (L'R) group, PC (ischemic postconditioning) group, PC + Bro (Bromocriptine, a DB2 antagonist) group, PC + Hal (Haloperidol, a DB2 repressor) and PC + Hal + Bro groups. The lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cell medium were analyzed by colorunetry. The cell ultrastructure changes were observed by transmission electron microscope. The cell apoptosis was analyzed using flowcytometiy. The protein expression level of D112 and activity of p-p38 and p-JNK were detected by Western blot.
RESULTSCompared with the nonnal control group, hR increased the protein expression level of DB2, enhanced LDH activity and MDA content, promoted cell injury and apoptosis, decreased SOD activity, up-regulated the activity of p-p38 and p-JNK. Compared with the hR group, although PC further increased the expression of DR2 protein, it decreased LDH activity and MDA content, cell injury and apoptosis, increased SOD activity, down-regulated activity of p-p38 and p-JNK. Bromocriptine treatment further enhanced PC-induced canlioprotective effect, yet Hal addition attenuated this enhancing effect exerted by bromocriptine.
CONCLUSIONThe activation of DB2 is involved in the protective effect of ischemic postconditioning on myocardial ischemia/reperfusion injury through down-regulating the activity of p-p38 and p-JNK.
Animals ; Apoptosis ; Cells, Cultured ; Ischemic Postconditioning ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Myocardial Reperfusion Injury ; prevention & control ; Myocytes, Cardiac ; pathology ; Rats ; Rats, Wistar ; Receptors, Dopamine D2 ; physiology ; p38 Mitogen-Activated Protein Kinases ; metabolism
10.p38 MAPK and ERK activation by 9-cis-retinoic acid induces chemokine receptors CCR1 and CCR2 expression in human monocytic THP-1 cells.
Jesang KO ; Chi Young YUN ; Ji Sook LEE ; Joo Hwan KIM ; In Sik KIM
Experimental & Molecular Medicine 2007;39(2):129-138
9-cis-retinoic acid (9CRA) plays an important role in the immune response; this includes cytokine production and cell migration. We have previously demonstrated that 9CRA increases expression of chemokine receptors CCR1 and CCR2 in human monocytes. To better understand how 9CRA induces CCR1 and CCR2 expression, we examined the contribution of signaling proteins in human monocytic THP-1 cells. The mRNA and surface protein up-regulation of CCR1 and CCR2 in 9CRA-stimulated cells were weakly blocked by the pretreatment of SB202190, a p38 MAPK inhibitor, and PD98059, an upstream ERK inhibitor. Activation of p38 MAPK and ERK1/2 was induced in both a time and dose-dependent manner after 9CRA stimulation. Both p38 MAPK and ERK1/2 phosphorylation peaked at 2 h after a 100 nM 9CRA treatment. 9CRA increased calcium influx and chemotactic activity in response to CCR1-dependent chemokines, Lkn-1/CCL15, MIP-1alpha/CCL3, and RANTES/CCL5, and the CCR2-specific chemokine, MCP-1/CCL2. Both SB202190 and PD98059 pretreatment diminished the increased calcium mobilization and chemotactic ability due to 9CRA. SB202190 inhibited the expression and functional activities of CCR1 and CCR2 more effectively than did PD98059. Therefore, our results demonstrate that 9CRA transduces the signal through p38 MAPK and ERK1/2 for CCR1 and CCR2 up-regulation, and may regulate the pro-inflammatory process through the p38 MAPK and ERK-dependent signaling pathways.
Calcium Signaling/drug effects
;
Cell Line
;
Chemokines/pharmacology
;
Chemotaxis, Leukocyte/drug effects
;
Enzyme Activation/drug effects
;
Extracellular Signal-Regulated MAP Kinases/*metabolism
;
Flavonoids/pharmacology
;
Gene Expression Regulation/*drug effects
;
Humans
;
Imidazoles/pharmacology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
Monocytes/drug effects/*enzymology
;
Pyridines/pharmacology
;
RNA, Messenger/genetics/metabolism
;
Receptors, CCR1
;
Receptors, CCR2
;
Receptors, Chemokine/*genetics/metabolism
;
Tretinoin/*pharmacology
;
p38 Mitogen-Activated Protein Kinases/*metabolism