1.Senescent endothelial dysfunctions were mediated by S1P2 receptor in cultured human umbilical vein endothelial cells.
Shuhua CHEN ; Hong XIANG ; Guoping YANG ; Hao DENG ; Hong YUAN ; Hongwei LU
Journal of Central South University(Medical Sciences) 2012;37(12):1239-1245
OBJECTIVE:
To investigate the variation of senescent endothelial function by regulating the sphingosine-1-phosphate receptor type 2 (S1P2) expression in cultured human umbilical vein endothelial cells (HUVECs).
METHODS:
The S1P2 receptor expression was regulated by transfecting the cDNA or shRNA of S1P2 in cultured HUVECs. The expression levels of S1P2 receptor in HUVECs were detected by RT-PCR and Western blot. EC chemotaxis was measured by the transwell migration assay. The wound healing assay was performed by a scratch wound model on EC monolayer. Matrigel morphogenesis assay was employed to assess the in vitro angiogenic responses.
RESULTS:
After up-regulating the S1P2 expression in young ECs, the S1P-stimulated formation of a tubular-like network in Matrigel was dramatically diminished in transfected ECs (P<0.05). Quantification of the wound healing assay showed that transfected ECs grew much slower than young ECs (P<0.05). The chemotactic capability was significantly decreased in transfected ECs (P<0.05). Furthermore, the senescent-associated impairments were revoked by the downregulation of S1P2 receptor in senescent HUVECs.
CONCLUSION
The impaired functions (chemotactic, wound-healing and morphogenetic responses) in senescent HUVECs in vitro are mediated by S1P2 receptor.
Cells, Cultured
;
Cellular Senescence
;
genetics
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
physiology
;
Humans
;
RNA Interference
;
RNA, Small Interfering
;
genetics
;
Receptors, Lysosphingolipid
;
genetics
;
metabolism
;
Sphingosine-1-Phosphate Receptors
;
Transfection
;
Up-Regulation
2.Lentiviral vectors carrying siRNA inhibit S1PR3 gene expression in the corpus cavernosum smooth muscle cells of rats with spontaneous hypertension.
Bang-Cai WU ; Ji-Yi XIA ; Rui JIANG ; Hai-Fan YANG
National Journal of Andrology 2017;23(2):110-119
Objective:
To screen lentiviral vectors carrying siRNA which can specifically down-regulate the gene expression of the sphingosine-1-phosphate receptor 3 (S1PR3) in the corpus cavernosum smooth muscle (CCSM) cells of rats with spontaneous hypertension (SHT) and investigate the influence of the vectors on the signaling pathways of ROCK1, ROCK2 and eNOS in the CCSM cells of SHT rats.
METHODS:
Using the S1PR3 mRNA sequence of the rat as an interfering target, we designed and synthesized three pairs of siRNA sequences (siRNA1, 2 and 3) targeting S1PR3 and one pair of negative control, and then constructed and packaged them into lentiviral vectors. We cultured the CCSM cells of SHT and Wistar-Kyoto (WKY) rats in vitro and randomly divided them into groups A (SHT untransfected control), B (SHT transfected and carrying negative control virus), C (SHT transfected and carrying siRNA1 targeting S1PR3), D (SHT transfected and carrying siRNA2 targeting S1PR3), E (SHT transfected and carrying siRNA3 targeting S1PR3), and F (WKY untransfected control). With the multiplicity of infection (MOI) = 60, we transfected the CCSM cells of the SHT rats with the lentiviral vector and then determined the expression of the green fluorescent protein (GFP) as well as the mRNA and protein expressions of S1PR3, ROCK1, ROCK2 and eNOS in the CCSM cells of the SHT and WKY rats by RT-PCR and Western blot.
RESULTS:
Gene sequencing proved the successful construction of the lentiviral vector. The transfection efficiency of the CCSM cells of the rats was >80% in groups B, C, D and E. Compared with group A, the mRNA and protein expressions of S1PR3, ROCK1 and ROCK2 exhibited no significant difference in group B but were remarkably decreased in groups C, D, E and F (P< 0.05), most significantly in group E, with the inhibition rates of the mRNA and protein expressions of S1PR3 of (34.2±2.9) and (77.7±4.7)%, those of ROCK1 of (33.3±1.4) and (51.1±7.3)%, and those of ROCK2 of (30.8±3.6) and (58.32±5.5)%, respectively. The mRNA and protein expressions of eNOS in group A showed no significant difference from those in groups B, C, D and E (P>0.05) but remarkably lower than those in group F (P< 0.05). Compared with group F, the mRNA and protein expressions of S1PR3, ROCK1 and ROCK2 were not significantly different from those in group E (P>0.05) but markedly increased in groups A, B, C and D (P< 0.05), while those of eNOS remarkably decreased in groups A, B, C, D and E (P< 0.05).
CONCLUSIONS
The three constructed lentiviral vectors carrying siRNA targeting different loci of the S1PR3 gene could significantly inhibit the expression of S1P3 as well as RhoA/Rho kinase signaling pathways in the CCSM cells of SHT rats, and the vector carrying siRNA3 exhibited the highest inhibitory effect.
Animals
;
Down-Regulation
;
Gene Expression
;
Genetic Vectors
;
Green Fluorescent Proteins
;
metabolism
;
Lentivirus
;
genetics
;
Male
;
Myocytes, Smooth Muscle
;
metabolism
;
Nitric Oxide Synthase Type III
;
metabolism
;
Penis
;
metabolism
;
RNA, Messenger
;
RNA, Small Interfering
;
genetics
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Inbred WKY
;
Receptors, Lysosphingolipid
;
genetics
;
metabolism
;
Signal Transduction
;
Sphingosine-1-Phosphate Receptors
;
Transfection
;
rho-Associated Kinases
;
metabolism
3.Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins.
Mi Kyoung KIM ; Kyoung Sun PARK ; Hyuck LEE ; Young Dae KIM ; Jeanho YUN ; Yoe Sik BAE
Experimental & Molecular Medicine 2007;39(2):185-194
Phytosphingosine-1-phosphate (PhS1P) was found to stimulate an intracellular calcium increase via phospholipase C but not pertussis toxin (PTX)- sensitive G-proteins in L2071 mouse fibroblasts. PhS1P also activated ERK and p38 kinase, and these activations by PhS1P were inhibited by PTX. Moreover, PhS1P stimulated the chemotactic migration of L2071 cells via PTX-sensitive Gi protein(s). In addition, the PhS1P-induced chemotactic migration of L2071 cells was also dramatically inhibited by LY294002 and SB203580 (inhibitors of phosphoinositide 3-kinase and p38 kinase, respectively). L2071 cells are known to express four S1P receptors, i.e., S1P1, S1P2, S1P3, and S1P4, and pretreatment with an S1P1 and S1P3 antagonist (VPC 23019) did not affect on PhS1P-induced chemotaxis. This study demonstrates that PhS1P stimulates at least two different signaling cascades, one is a PTX-insensitive but phospholipase C dependent intracellular calcium increase, and the other is a PTX-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and p38 kinase.
1-Phosphatidylinositol 3-Kinase/metabolism
;
Animals
;
Calcium Signaling/drug effects
;
Chemotaxis/*drug effects
;
Estrenes/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Fibroblasts/*cytology/*drug effects
;
GTP-Binding Proteins/*metabolism
;
Gene Expression Regulation/drug effects
;
Humans
;
Mice
;
Pertussis Toxin/*pharmacology
;
Phosphorylation/drug effects
;
Pyrrolidinones/pharmacology
;
RNA, Messenger/genetics/metabolism
;
Receptors, Lysosphingolipid/genetics/metabolism
;
Sphingosine/*analogs & derivatives/pharmacology
;
p38 Mitogen-Activated Protein Kinases/metabolism