1.Study on the differential expression of lipid metabolism-related genes in young LDLR knockout mice liver.
Yun-Ju SHANG ; Xue-Dong DAI ; Wen JING ; Hui-Qin DU ; Hong-Yan YE ; Miao YIN ; Liang ZHANG ; Sheng-Qiang ZHANG ; Ji-Feng LI ; Jie PAN
Chinese Journal of Pathology 2008;37(3):179-183
OBJECTIVETo clarify the differential expression of the genes related to the lipid metabolism in the early stage of atherosclerosis in the young LDLR-/- mice of different ages.
METHODSA RT-PCR assay was used to analyse the gene expression patterns in the livers of LDLR-/- mice and wild type (WT) mice from 14 to 90 days. The characteristics of early lipid deposition in intima were evaluated using biochemical and pathological techniques.
RESULTSIn LDLR-/- mice, when compared to WT mice, the mRNA level of the apolipoprotein A IV (apoA IV), fatty acid translocase (Fat/CD36) and carnitine palmitoyl transferase I (CPT I) changed prominently at the age of 14-days (P < 0.05). At 30 days, the mRNA level of apolipoprotein A I (apoA I) was up regulated, but apolipoprotein F (apoF), CD36 and CPT I were down regulated (P < 0.05). At 60 days, the mRNA levels of apoA I, CPT I and liver X receptor alpha (LXRalpha) were up regulated, but apoA IV was down regulated (P < 0.05). At 90 days, the level of the apoA I was higher, but the expression of the apoA IV, apoF and acyl-coenzymeA oxidase 1 (ACOX1) were down regulated (P < 0.05), whereas the expression of apolipoprotein A V (apoA V), apolipoprotein E (apoE), peroxidase proliferator-activated receptor alpha (PPARalpha) and angiopoietin-like protein 3 (angptl 3) had no significant changes (P > 0.05). The serum levels of TC (P < 0.05), TG (P < 0.05) and LDLC (P < 0.05) in LDLR-/- mice were significantly higher than those in wild type mice with the same age.
CONCLUSIONSThe mRNA levels of the apoA I, apoA IV, apoF, FAT/CD36, CPT I, ACOX1 and LXRalpha of the LDLR-/- mice were significantly changed compared to the WT mice. The genes may be of some relevance to the complicated lipid metabolism network, and have effect in the early stage of atherogenesis.
Animals ; Apolipoprotein A-I ; genetics ; metabolism ; Apolipoproteins A ; genetics ; metabolism ; Apolipoproteins E ; genetics ; metabolism ; Gene Expression ; Lipid Metabolism ; Liver ; metabolism ; Liver X Receptors ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Orphan Nuclear Receptors ; genetics ; metabolism ; RNA, Messenger ; metabolism ; Receptors, LDL ; deficiency
2.Expression profiles of lipid metabolism-related genes in liver of apoE(-/-)/LDLR(-/-) mice.
Hui-qin DU ; Miao YIN ; Hong-yan YE ; Yun-ju SHANG ; Xue-dong DAI ; Wen JING ; Liang ZHANG ; Ning XIAO ; Ji-feng LI ; Jie PAN
Chinese Journal of Pathology 2007;36(11):751-755
OBJECTIVETo explore the relationship between the expression characteristics of lipid metabolism-related genes in the liver and early atherosclerotic lesions in apolipoprotein E and low density lipoprotein receptor gene double knockout (apoE(-/-)/LDLR(-/-)) mice.
METHODSRT-PCR was used to detect the differential expression of lipid metabolism-related genes in the liver of apoE(-/-)/LDLR(-/-) and wild type (WT) mice. Serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) level as well as aortic morphology were also analyzed.
RESULTSAmong the 11 lipid metabolism-related genes, apolipoprotein B100 (apoB100) mRNA levels were significantly higher in apoE(-/-)/LDLR(-/-)mice compared with WT mice. At 14 days, 1, 2 and 3 months of age, the level of mRNA expression were 1.55, 1.47, 1.50 and 2.42 folds of those of the age matched WT mice respectively. The fatty acid transporter (FAT/CD36) mRNA expression levels were higher in 14-day and 3-month old mice at 1.30 and 1.35 folds of those of the age matched WT mice, respectively. Apolipoprotein A IV (apoA IV) and Apolipoprotein AV (apoAV) mRNA levels were significantly down-regulated (0.89 fold decrease in 14-day, and 0.90 folds decrease in 3-month, respectively). The mRNA expression levels of apolipoprotein AI (apo AI), apolipoprotein F (apo F), peroxidase proliferator-activated receptor alpha (PPAR-alpha), liver X receptor alpha (LXRalpha), angiopoietin-like protein 3 (ANGPTL3), acyl-coenzymeA oxidase 1 (ACOX1) and carnitine palmitoyl transferase 1 (CPT1) had no significant changes. Serum TC, TG and LDL-C were higher than those of age matched WT mice at 7, 2 and 30 folds, respectively. Furthermore, apoE(-/-)/LDLR(-/-) mice demonstrated typical early atherosclerotic lesions at sinus and root regions of aorta in an age dependent manner.
CONCLUSIONAlterations of the expression of lipid metabolism-related genes in liver play important roles in the development of AS in the apoE(-/-)/LDLR(-/-) mice at early ages.
Animals ; Aorta ; pathology ; Apolipoprotein A-V ; Apolipoprotein B-100 ; biosynthesis ; genetics ; Apolipoproteins ; biosynthesis ; genetics ; Apolipoproteins A ; biosynthesis ; genetics ; Apolipoproteins E ; deficiency ; Atherosclerosis ; etiology ; metabolism ; pathology ; CD36 Antigens ; biosynthesis ; genetics ; Gene Expression ; Lipid Metabolism ; Liver ; metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; RNA, Messenger ; metabolism ; Receptors, LDL ; deficiency
3.5-(4-Hydroxy-2,3,5-trimethylbenzylidene) thiazolidine-2,4-dione attenuates atherosclerosis possibly by reducing monocyte recruitment to the lesion.
Jae Hoon CHOI ; Jong Gil PARK ; Hyung Jun JEON ; Mi Sun KIM ; Mi Ran LEE ; Mi Ni LEE ; SeongKeun SONN ; Jae Hong KIM ; Mun Han LEE ; Myung Sook CHOI ; Yong Bok PARK ; Oh Seung KWON ; Tae Sook JEONG ; Woo Song LEE ; Hyun Bo SHIM ; Dong Hae SHIN ; Goo Taeg OH
Experimental & Molecular Medicine 2011;43(8):471-478
A variety of benzylidenethiazole analogs have been demonstrated to inhibit 5-lipoxygenase (5-LOX). Here we report the anti-atherogenic potential of 5-(4-hydroxy-2,3,5-trimethylbenzylidene) thiazolidin-2,4-dione (HMB-TZD), a benzylidenethiazole analog, and its potential mechanism of action in LDL receptor-deficient (Ldlr-/-) mice. HMB-TZD Treatment reduced leukotriene B4 (LTB4) production significantly in RAW264.7 macrophages and SVEC4-10 endothelial cells. Macrophages or endothelial cells pre-incubated with HMB-TZD for 2 h and then stimulated with lipopolysaccharide or tumor necrosis factor-alpha (TNF-alpha) displayed reduced cytokine production. Also, HMB-TZD reduced cell migration and adhesion in accordance with decreased proinflammatory molecule production in vitro and ex vivo. HMB-TZD treatment of 8-week-old male Ldlr-/- mice resulted in significantly reduced atherosclerotic lesions without a change to plasma lipid profiles. Moreover, aortic expression of pro-atherogenic molecules involved in the recruitment of monocytes to the aortic wall, including TNF-alpha , MCP-1, and VCAM-1, was downregulated. HMB-TZD also reduced macrophage infiltration into atherosclerotic lesions. In conclusion, HMB-TZD ameliorates atherosclerotic lesion formation possibly by reducing the expression of proinflammatory molecules and monocyte/macrophage recruitment to the lesion. These results suggest that HMB-TZD, and benzylidenethiazole analogs in general, may have therapeutic potential as treatments for atherosclerosis.
Animals
;
Atherosclerosis/*drug therapy
;
Cell Adhesion/drug effects
;
Cell Line
;
Cell Movement/drug effects
;
Chemokine CCL2/metabolism
;
Dinoprostone/metabolism
;
Enzyme-Linked Immunosorbent Assay
;
Humans
;
Leukotriene B4/metabolism
;
Macrophages/cytology/drug effects
;
Male
;
Mice
;
Monocytes/cytology/*drug effects
;
Random Allocation
;
Receptors, LDL/deficiency/genetics
;
Thiazolidinediones/*therapeutic use
;
Tumor Necrosis Factor-alpha/pharmacology