1.Research on the inhibitory effects of evodiamine on activated T cell proliferation.
Jianan TANG ; Xingyan LUO ; Jingjing HE ; Xiaoxin ZENG ; Yang LIU ; Yi LAI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):524-530
Objective To explore the characteristics of the inhibitory effect of Evodiamine on the proliferation of activated T cells. Methods Mononuclear cells from peripheral blood (PBMCs) were obtained from healthy donors through density gradient centrifugation, and T cells were subsequently purified by using immunomagnetic bead separation. T cell activation was induced by employing anti-human CD3 and anti-human CD28 antibodies. T cells were treated with different concentrations of EVO (0.37, 1.11, 3.33, and 10)μmol/L. Flow cytometry was applied to evaluate the proliferation index, apoptosis rate, viability, CD25 expression levels, and cell cycle distribution of T cells. The expression levels of cytokines IL-2, IL-17A, IL-4, and IL-10 were quantified by using ELISA. Results 1.11, 3.33 and 10 μmol/L EVO effectively inhibited the proliferation of activated T cells, with an IC50 of (1.5±0.3)μmol/L. EVO did not induce apoptosis in activated T cells and affect the survival rate of resting T cells. EVO did not affect the expression of CD25 and the secretion of IL-2 in activated T cells. EVO arrested the T cell cycle at the G2/M phase, resulting in an increase in G2/M phase cells, and exhibited a concentration-dependent effect. EVO did not affect the secretion of IL-4, IL-10 by activated T cells, but significantly inhibited the secretion of IL-17A. Conclusion EVO did not significantly affect the activation process of T cells but inhibited T cell proliferation by arresting the cell cycle at the G2/M phase and significantly suppressed the secretion of the pro-inflammatory cytokine IL-17A, which suggests that EVO has the potential to serve as a lead compound for the development of low-toxicity and high-efficiency immunosuppressants and elucidates the mechanisms underlying the anti-inflammatory and immunomodulatory effects of the traditional Chinese medicine Evodia rutaecarpa.
Humans
;
Cell Proliferation/drug effects*
;
Quinazolines/pharmacology*
;
T-Lymphocytes/metabolism*
;
Lymphocyte Activation/drug effects*
;
Apoptosis/drug effects*
;
Interleukin-4/metabolism*
;
Interleukin-10/metabolism*
;
Interleukin-2 Receptor alpha Subunit/metabolism*
;
Interleukin-17/metabolism*
;
Interleukin-2/metabolism*
;
Cell Cycle/drug effects*
;
Cells, Cultured
2.Study on the effect of ATPIF1 on the anti-tumor activity of CAR-NK92 cells by regulating glycolytic capacity.
Biao LIU ; Xue GONG ; Biliang HU ; Chunlei GUO ; Genshen ZHONG
Chinese Journal of Cellular and Molecular Immunology 2025;41(10):865-874
Objective To investigate the effect of ATP synthase inhibitory factor 1 (ATPIF1) on the antitumor activity of chimeric antigen receptor (CAR)-NK92 cells. Methods HER2-targeted CAR-NK92 cells with ATPIF1 overexpression or knockdown were constructed. CAR-positive expression rate was detected by flow cytometry. Cell proliferation capacity was measured using CCK-8 assay. Glycolytic capacity was analyzed by Seahorse metabolic analyzer. Mitochondrial membrane potential levels were detected using JC-1 probe. Target cell lysis rate was evaluated by firefly luciferase reporter assay. Expression levels of CD107a, natural-killer group 2 member D (NKG2D), granzyme B (GzmB), perforin, and interleukin 2 (IL-2) were detected via flow cytometry. Quantitative real-time PCR was used to measure the expression of interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), tumor necrosis factor α (TNF-α), ATPIF1, and hexokinase 1 (HK1). The impact of glycolytic inhibition by 2-Deoxy-D-glucose (2-DG) on CAR-NK92 antitumor capacity was examined. Results Successfully generated HER2-targeting control CAR-NK92 cells, as well as ATPIF1-overexpressing and ATPIF1 knockdown CAR-NK92 cells. The ATPIF1-overexpressing CAR-NK92 cells showed significantly enhanced target cell lysis rate, elevated expression levels of NKG2D and CD107a, increased secretion capacities of Granzyme B (GzmB) and IL-2, and upregulated mRNA expression levels of IFIT1 and TNF-α, while ATPIF1-knockdown cells exhibited opposite effects. ATPIF1 overexpression induced metabolic reprogramming in CAR-NK92 cells, manifested by significantly decreased mitochondrial membrane potential (δpsim), markedly upregulated HK1 mRNA expression, and enhanced basal glycolysis and glycolytic capacity. After glycolysis inhibition with 2-DG (5 μmol/L), both ATPIF1-overexpressing and knockdown CAR-NK92 cells showed no significant differences in NKG2D and CD107a expression levels compared to control cells. Conclusion ATPIF1 regulates the antitumor activity of CAR-NK92 cells through modulating glycolytic metabolism. Overexpression of ATPIF1 can enhance the antitumor efficacy of CAR-NK92 cells.
Humans
;
Glycolysis
;
Killer Cells, Natural/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Granzymes/genetics*
;
Hexokinase/metabolism*
;
Cell Line, Tumor
;
Interleukin-2/genetics*
;
Cell Proliferation
;
NK Cell Lectin-Like Receptor Subfamily K/genetics*
;
Membrane Potential, Mitochondrial
3.The Predictive Value of Serum sIL-2R Combined with TNF-α, IgG and IgA in the Recurrence of Multiple Myeloma.
Ping LIN ; Ya-Lan ZHANG ; Ruo-Teng XIE ; Xue-Ya ZHANG
Journal of Experimental Hematology 2025;33(1):150-156
OBJECTIVE:
To investigate the predictive value of serum soluble interleukin-2 receptor(sIL-2R), tumor necrosis factor alpha(TNF-α), IgG and IgA for the recurrence in patients with multiple myeloma(MM).
METHODS:
A total of 108 MM patients who were initially diagnosed and treated in our hospital from January 2017 to March 2019, and 72 patients who met the diagnostic criteria and had complete follow-up data were selected as the study subjects. MM recurrence was the endpoint event, and follow-up was conducted until the occurrence of the endpoint event or the deadline of this study. MM patients were divided into recurrent group(RG) and non-recurrent group(NRG) based on whether they have relapsed or not. Venous blood was collected from patients at the first diagnosis and follow-up (at the occurrence of endpoint events or termination of the study), and enzyme-linked immunosorbent assay(ELISA) was used to detect sIL-2R and TNF-α levels in the patient's serum. An automatic immune analyzer was used to detect the levels of IgG and IgA in the patient's serum. The differences in expression levels of the factors between two groups were compared and the correlations between sIL-2R and TNF-α, IgG and IgA at the first diagnosis and follow-up were analyzed. At the same time, venous blood was collected from patients during complete remission, and their serum sIL- 2R levels were measured to compare the differences in sIL-2R expression levels at the first diagnosis, complete remission and recurrence. Receiver operating characteristic(ROC) curves was used to determine the optimal cutoff values for serum sIL-2R, TNF-α, IgG and IgA, and the predictive value of sIL-2R, TNF-α, IgG and IgA in the recurrence of MM patients were analyzed based on the area under the curve(AUC).
RESULTS:
The serum sIL-2R levels of MM patients at the first diagnosis and recurrence were significantly higher than at complete remission (P < 0.05). At the first diagnosis, the hemoglobin content of RG was lower than that of NRG, while the β2-microglobulin content was higher than that of NRG (P < 0.001). There was no significant difference in other clinical parameters between the two groups (P >0.05). The levels of sIL-2R, TNF-α, IgG and IgA at the first diagnosis and follow-up of RG were higher than those of NRG (P < 0.05). There was a significant correlation between sIL-2R and TNF-α, IgG and IgA at the first diagnosis and follow-up (P < 0.001). The ROC curve showed that, at the first diagnosis, sIL-2R, TNF-α, IgG and IgA predicted the AUC of MM patients were 0.919, 0.850, 0.766 and 0.795, respectively, after follow-up, they predicted AUC of MM were 0.890, 0.815, 0.760 and 0.794, respectively (P < 0.001).
CONCLUSION
The serum sIL-2R has the highest predictive value for MM patient's recurrence, and it is possible to detect the TNF-α, IgG and IgA levels at specific times to infer changes in sIL-2R levels and evaluate the patient's prognosis.
Humans
;
Multiple Myeloma/blood*
;
Immunoglobulin A/blood*
;
Immunoglobulin G/blood*
;
Tumor Necrosis Factor-alpha/blood*
;
Receptors, Interleukin-2/blood*
;
Recurrence
;
Male
;
Female
;
Neoplasm Recurrence, Local
;
Middle Aged
;
Prognosis
4.Biological activity and antitumor effect of long-acting recombinant human interleukin-2 drug.
Xuejun LIANG ; Fengxia ZHANG ; Ting JIN ; Jingjing ZHU
Journal of Peking University(Health Sciences) 2025;57(2):253-261
OBJECTIVE:
To investigate the biological activity and antitumor effect of pegylated recombinant human interleukin 2 (PEG-rhIL-2) obtained by site-specific conjugation of polyethylene glycol (PEG) with non-natural amino acids, and to explore its antitumor mechanism.
METHODS:
The binding activities of PEG-rhIL-2 at three different sites (T41, Y45, and V91) to human interleukin 2 receptors α (IL-2Rα) and β (IL-2Rβ) and were detected by surface plasmon resonance (SPR) technology. Western blot was used to detect the levels of the Janus kinase-signal transducer and activator of transcription 5 (JAK-STAT5) signaling pathway activated by different doses of rhIL-2 and PEG-rhIL-2 in CTTL-2 and YT cells. Blood was collected after a single administration in mice to detect the drug concentration at different time points and evaluate the pharmacokinetic parameters of Y45-PEG-rhIL-2. Mouse hepatoma cell line Hepa1-6, pancreatic cancer cell line Pan-02, and colon cancer cell line MC-38 were selected. Tumor models were constructed in C57BL/6 mice. Different doses of Y45-PEG-rhIL-2 and excipient control were administrated respectively to evaluate the tumor suppression effect of the drug. In the MC-38 colon cancer model, the tumor suppression effect of Y45-PEG-rhIL-2 combined with anti-programmed death-1 (PD-1) monoclonal antibody was evaluated. Hepa1-6 mouse tumor models were constructed and rhIL-2, Y45-rhIL-2 and Y45-PEG-rhIL-2 were administrated respectively. The proportion of tumor-infiltrating lymphocytes was analyzed by flow cytometry.
RESULTS:
The SPR detection results showed that the binding activities of PEG-rhIL-2 to IL-2Rα/IL-2Rβ were both reduced. The affinity of Y45-PEG-rhIL-2 to IL-2Rα was reduced to approximately 1/250, and its affinity to IL-2Rβ was reduced to 1/3. Western blot results showed that the activity of Y45-PEG-rhIL-2 in stimulating JAK-STAT5 signaling in CTLL-2 cells expressing heterotrimeric IL-2 receptor complex IL-2Rαβγwas reduced to approximately 1/300, while its activity in YT cells expressing heterodimeric IL-2 receptor complex IL-2Rβγwas reduced to approximately 1/3. The pharmacokinetic evaluation after a single dose in the mice showed that the elimination half-life of Y45-PEG-rhIL-2 was 17.7 h. Y45-PEG-rhIL-2 has pharmacokinetic characteristics superior to those of rhIL-2. Y45-PEG-rhIL-2 showed dose-dependent tumor suppression activity, and the combination of Y45-PEG-rhIL-2 and anti-PD-1 antibody had a better tumor-inhibiting effect than the single use of Y45-PEG-rhIL-2 or anti-PD-1 antibody. Flow cytometry analysis demonstrated that 72 h after the administration of Y45-PEG-rhIL-2, the proportion of tumor-infiltrating cytotoxic T lymphocytes (CD8+T cells) increased by 86.84%. At 120 h after administration, the ratio of CD8+T cells to regulatory T cells (Treg) increased by 75.10%.
CONCLUSION
Y45-PEG-rhIL-2 obtained by site-specific conjugation via non-natural amino acids changed its receptor binding activity and inhibited tumor growth in dose-dependent manner in multiple tumor models by regulating CD8+T cells.
Interleukin-2/pharmacokinetics*
;
Animals
;
Mice
;
Humans
;
Recombinant Proteins/pharmacology*
;
Polyethylene Glycols/chemistry*
;
Cell Line, Tumor
;
Antineoplastic Agents/pharmacokinetics*
;
Signal Transduction/drug effects*
;
STAT5 Transcription Factor/metabolism*
;
Interleukin-2 Receptor alpha Subunit/metabolism*
;
Interleukin-2 Receptor beta Subunit/metabolism*
5.The Effects and Regulatory Mechanism of Targeting CXC Chemokine Receptor 1/2 Combined with Ara-C on the Malignant Biological Behaviors of U937 Cells of Acute Myeloid Leukemia.
Yan-Quan LIU ; Jian-Zhen SHEN ; Yue YIN ; Yu-Ting CHEN ; Hui YANG ; Huan-Wen TANG
Journal of Experimental Hematology 2023;31(2):364-376
OBJECTIVE:
To investigate and analyze the effect of CXC chemokine receptor 1/2 (CXCR1/2) targeting inhibitor Reparixin combined with cytarabine (Ara-C) on the malignant biological behaviors of acute myeloid leukemia cells and its effect on the expression of the CXCR family, while exploring the accompanying molecular mechanism, providing scientific basis and reference for new molecular markers and targeted therapy for AML.
METHODS:
Acute myeloid leukemia U937 cells were treated with different concentrations of Reparixin, Ara-C alone or in combination, and the cell morphology was observed under an inverted microscope; Wright-Giemsa staining was used to detect cell morphological changes; CCK-8 method was used to detect cell proliferation; the ability of cell invasion was detected by Transwell chamber method; the ability of colony formation was detected by colony formation assay; cell apoptosis was detected by Hoechst 33258 fluorescent staining and Annexin V/PI double-staining flow cytometry; monodansylcadaverine(MDC) staining was used to detect cell autophagy; the expression of apoptosis, autophagy and related signaling pathway proteins was detected by Western blot and the expression changes of CXCR family were detected by real-time quantitative polymerase chain reaction (qRT-PCR).
RESULTS:
Reparixin could inhibit the proliferation, invasion, migration and clone formation ability of U937 cells. Compared with the single drug group, when U937 cells were intervened by Reparixin combined with Ara-C, the malignant biological behaviors such as proliferation, invasion and colony formation were significantly decreased, and the levels of apoptosis and autophagy were significantly increased (P<0.01). After Reparixin combined with Ara-C intervenes in U937 cells, it can up-regulate the expression of the pro-apoptotic protein Bax and significantly down-regulate the expression of the anti-apoptotic protein Bcl-2, and also hydrolyze and activate Caspase-3, thereby inducing cell apoptosis. Reparixin combined with Ara-C could up-regulate the expressions of LC3Ⅱ and Beclin-1 proteins in U937 cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P<0.01). MDC result showed that the green granules of vesicles increased significantly, and a large number of broken cells were seen (P<0.01). Reparixin combined with Ara-C can significantly inhibit the phosphorylation level of PI3K, AKT and NF-κB signaling molecule, inhibit the malignant biological behavior of cells by inhibiting the activation of PI3K/AKT/NF-κB pathway, and induce programmed cell death. Ara-C intervention in U937 cells had no effect on the expression of CXCR family (P>0.05). The expression of CXCR1, CXCR2, and CXCR4 mRNA could be down-regulated by Reparixin single-agent intervention in U937 cells (P<0.05), and the expression of CXCR2 was more significantly down-regulated than the control group and other CXCRs (P<0.01). When Reparixin and Ara-C intervened in combination, the down-regulated levels of CXCR1 and CXCR2 were more significant than those in the single-drug group (P<0.01), while the relative expressions of CXCR4 and CXCR7 mRNA had no significant difference compared with the single-drug group (P>0.05).
CONCLUSION
Reparixin combined with Ara-C can synergistically inhibit the malignant biological behaviors of U937 cells such as proliferation, invasion, migration and clone formation, and induce autophagy and apoptosis. The mechanism may be related to affecting the proteins expression of Bcl-2 family and down-regulating the proteins expression of CXCR family, while inhibiting the PI3K/AKT/NF-κB signaling pathway.
Humans
;
U937 Cells
;
Cytarabine/therapeutic use*
;
Receptors, Interleukin-8A
;
NF-kappa B
;
Proto-Oncogene Proteins c-akt
;
Phosphatidylinositol 3-Kinases
;
Leukemia, Myeloid, Acute/genetics*
;
Apoptosis
;
Cell Proliferation
;
Apoptosis Regulatory Proteins
;
Proto-Oncogene Proteins c-bcl-2
;
RNA, Messenger
;
Cell Line, Tumor
6.Study on construction of c-Met specific CAR-T cells and its killing effect on non-small cell lung carcinoma.
Jing Ting MIN ; Lu ZHANG ; Chi Rong LONG ; Hong Lian FAN ; Zheng hong LI
Chinese Journal of Oncology 2023;45(4):322-329
Objective: To produce chimeric antigen receptor T cells (CAR-T) targeting human hepatocyte growth factor/c-Met (HGF/c-Met) protein and detect its cytotoxicity against non-small cell lung cancer (NSCLC) cells H1975 in vitro. Methods: The whole gene sequence of c-Met CAR containing c-Met single-chain fragment variable was synthesized and linked to lentiviral vector plasmid, plasmid electrophoresis was used to detect the correctness of target gene. HEK293 cells were transfected with plasmid and the concentrated solution of the virus particles was collected. c-Met CAR lentivirus was transfected into T cells to obtain second-generation c-Met CAR-T and the expression of CAR sequences was verified by reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) and western blot, and the positive rate and cell subtypes of c-Met CAR-T cells were detected by flow cytometry. The positive expression of c-Met protein in NSCLC cell line H1975 was verified by flow cytometry, and the negative expression of c-Met protein in ovarian cancer cell line A2780 was selected as the control. The cytotoxicity of c-Met CAR-T to H1975 was detected by lactate dehydrogenase (LDH) cytotoxicity assay at 1∶1, 5∶1, 10∶1 and 20∶1 of effector: target cell ratio (E∶T). Enzyme-linked immunosorbent assay (ELISA) was used to detect the release of cytokines such as TNF-α, IL-2 and IFN-γ from c-Met CAR-T co-cultured with H1975. Results: The size of band was consistent with that of designed c-Met CAR, suggesting that the c-Met CAR plasmid was successfully constructed. The results of gene sequencing were consistent with the original design sequence and lentivirus was successfully constructed. CAR molecules expression in T cells infected with lentivirus was detected by western blot and RT-qPCR, which showed c-Met CAR-T were successfully constructed. Flow cytometry results showed that the infection efficiency of c-Met CAR in T cells was over 38.4%, and the proportion of CD8(+) T cells was increased after lentivirus infection. The NSCLC cell line H1975 highly expressed c-Met while ovarian cancer cell line A2780 negatively expressed c-Met. LDH cytotoxicity assay indicated that the killing efficiency was positively correlated with the E∶T, and higher than that of control group, and the killing rate reached 51.12% when the E∶T was 20∶1. ELISA results showed that c-Met CAR-T cells released more IL-2, TNF-α and IFN-γ in target cell stimulation, but there was no statistical difference between c-Met CAR-T and T cells in the non-target group. Conclusions: Human NSCLC cell H1975 expresses high level of c-Met which can be used as a target for immunotherapy. CAR-T cells targeting c-Met have been successfully produced and have high killing effect on c-Met positive NSCLC cells in vitro.
Humans
;
Female
;
Receptors, Chimeric Antigen/genetics*
;
Carcinoma, Non-Small-Cell Lung
;
CD8-Positive T-Lymphocytes
;
Interleukin-2/pharmacology*
;
Tumor Necrosis Factor-alpha
;
Cell Line, Tumor
;
HEK293 Cells
;
Lung Neoplasms
;
Ovarian Neoplasms
;
Immunotherapy, Adoptive
7.The role of CD4+ CD25+ Treg in the mechanism of autoimmune auditory neuropathy in SD rats.
Yuan ZHOU ; Fan SONG ; Jun LUO
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2023;58(3):225-232
Objective: To investigate the role of CD4+CD25+regulatory cell (CD4+CD25+Treg) in auditory neuropathy (AN) using a rat model of autoimmune auditory neuropathy. Methods: The SD rats were immunized with P0 protein emulsified in complete Freunds adjuvant for 8 weeks. The number of CD4+CD25+Treg in peripheral blood and cochlea and the expression of Foxp3 gene in cochlea were detected respectively 2, 4, 6 and 8 weeks after the immunization with P0 protein in rats. Then CD4+CD25+Treg were transferred intravenously to the AN rats at 2, 4, 6 and 8 weeks of the immunization, respectively. The change of auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) were detected, and the morphological changes in the inner ear were investigated. Results: The number of CD4+CD25+Treg in the peripheral blood of AN rats decreased gradually after 2, 4, 6 and 8 weeks of P0 protein immunization. The number of CD4+CD25+Treg in cochlea gradually increased with the prolongation of immunization time, but the expression of Foxp3 gene in cochlea gradually decreased over time. After intravenous transplantation of CD4+CD25+Treg in AN rats, the threshold of ABR response decreased, and DPOAE had no significant change. The number of spiral ganglion neurons in cochlea increased, and hair cells had no significant change under electron microscope. Conclusions: The decrease in the number and function of CD4+CD25+Treg reduces its inhibitory effect on autoimmune response and promotes the occurrence of autoimmune auditory neuropathy in AN rats. Adoptive transfer of CD4+CD25+Treg can reduce the autoimmune response and promote the recovery of autoimmune auditory neuropathy.
Animals
;
Rats
;
Forkhead Transcription Factors
;
Myelin P0 Protein
;
Rats, Sprague-Dawley
;
T-Lymphocytes, Regulatory
;
CD4 Antigens/immunology*
;
Interleukin-2 Receptor alpha Subunit/immunology*
9.Expression of SIL-2R in Patients with Multiple Myeloma and Its Clinical Significance.
Ping LIN ; Xiao-Rong LIN ; Qiao-Ling LIU ; Xue-Ya ZHANG ; Gen-Wang CHEN ; Ruo-Teng XIE ; Ya-Lan ZHANG ; Xiu-Huan DU
Journal of Experimental Hematology 2022;30(6):1797-1802
OBJECTIVE:
To investigate the expression and clinical significance of soluble interleukin-2 receptor(sIL-2R) in patients with multiple myeloma(MM).
METHODS:
54 newly diagnosed MM patients in the Second Affiliated Hospital of Fujian Medical University from February 2020 to December 2021 were selected as the observation group, and 60 healthy people in our hospital in the same period were selected as the control group. The expression levels of sIL-2R in the serum of the two groups were detected by enzyme-linked immunosorbent assay. The differences of sIL-2R expression level among different clinical parameter groups in MM patients were compared. The clinical parameters include:gender, age, ISS stage, hemoglobin, albumin, serum creatinine, lactate dehydrogenase and β2-microglobulin, blood calcium, bone marrow plasma cell ratio and treatment response. The relationship between sIL-2R expression level and progression-free survival(PFS) and overall survival(OS) in MM patients were analyzed.
RESULTS:
The expression of serum SIL-2R in MM patients was significantly higher than that in healthy control group (P<0.05). The expression of sIL-2R in MM patients who did not achieve complete remission(CR) was significantly higher than those of CR patients (P=0.037). There was no significant difference in the expression of serum sIL-2R between the groups of different sex, age, ISS stage, hemoglobin concentration, albumin content, serum creatinine level, lactate dehydrogenase level, the content of β2-microglobulin, the concentration of blood calcium, and the proportion of bone marrow plasma cells(P>0.05). The PFS of sIL-2R high expression group(15 months) was shorter than that of sIL-2R low expression group (22 months), which was significant difference (P=0.041). But there was no significant difference in OS between sIL-2R high expression group and sIL-2R low expression group (P=0.124). Univariate analysis results showed that the high expression of serum sIL-2R was associated with poor PFS in MM patients. Multivariate analysis results showed that the high expression of serum sIL-2R was still an independent adverse prognostic factor for PFS in MM patients, However, the expression of serum sIL-2R was not statistically significant in evaluating OS in MM patients by univariate and multivariate analysis.
CONCLUSION
The expression of serum sIL-2R in MM patients was significantly higher than that in healthy people. Serum sIL-2R is an independent prognostic factor of PFS in MM patients.
Humans
;
Calcium
;
Clinical Relevance
;
Creatinine
;
Lactate Dehydrogenases
;
Multiple Myeloma
;
Receptors, Interleukin-2
10.Cancer immunotherapy: an evolving paradigm.
Journal of Zhejiang University. Science. B 2022;23(10):791-792
The inhibition of the host's natural immune response by tumor cells was widely reported in the early phases of the development of oncology therapy, and the concept of employing the host's immune system to treat cancer, i.e. tumor immunotherapy, is not new. However, as a result of early theoretical constraints, clinical application of immunotherapy did not go smoothly and lagged significantly behind radiation and chemotherapy. The path has been winding, but the future now seems promising. Immunotherapy research has advanced enormously as a result of the maturing of immuno-editing theory and the creation of numerous technologies, despite a number of unsuccessful endeavors and clinical studies. Since around 1998, the US Food and Drug Administration (FDA) has approved a variety of tumor immunotherapies, including cytokines (interleukin-2, interferons), cancer vaccines (Provenge), immune checkpoint inhibitors (ipilimumab), and cellular therapies (chimeric antigen receptor-T (CAR-T)), signaling a boom in the field.
Cancer Vaccines/therapeutic use*
;
Humans
;
Immune Checkpoint Inhibitors
;
Immunotherapy
;
Interferons
;
Interleukin-2/therapeutic use*
;
Ipilimumab
;
Neoplasms/pathology*
;
Receptors, Chimeric Antigen

Result Analysis
Print
Save
E-mail