1.Construction and functional analysis of EGFRvIII CAR-T cells co-expressing IL-15 and CCL19.
Wanqiong CHEN ; Na XIAN ; Shaomei LIN ; Wanting LIAO ; Mingzhu CHEN
Chinese Journal of Biotechnology 2023;39(9):3787-3799
The aim of this study was to investigate the functional characteristics and in vitro specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, in vitro specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability in vitro (all P < 0.05), while there was no significant difference in killing ability in vitro. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.
Humans
;
Receptors, Chimeric Antigen/metabolism*
;
Glioblastoma/metabolism*
;
Interleukin-15/metabolism*
;
Chemokine CCL19/metabolism*
;
Cell Line, Tumor
;
T-Lymphocytes/metabolism*
2.Development of a fusion toxin IL15M-PEdelta293 based on a receptor-specific IL-15 antagonist.
Yun-Fei NIU ; Ying ZHENG ; Xiao-Hua MAO
Chinese Journal of Biotechnology 2005;21(1):42-46
IL-15 and IL-15 receptors (IL-15R) play a crucial role in the pathogenesis of adult T-cell leukemia (ATL), multiple myeloma and inflammatory autoimmune diseases. To develop a novel therapeutic agent capable of eliminating IL-15R-over-expressing abnormal cells, the gene coding for human IL-15 antagonist (IL-15M) was fused with a DNA fragment coding for the mutated form of Pseudomonas exotoxin, PEdelta293. The resulting gene fusion was cloned into pET16b under the control of T7 promoter, giving rise to the expression plasmid pET-IL15M-PEdelta293. Using Ni2+ -NTA affinity chromatography, IL15M-PEdelta293 was purified from E. coli BL21 (DE3) pLysS transformed with pET-IL15M-PEdelta293. The fusion toxin showed cytotoxicity to IL-15R-bearing myelogenous leukemia cell line K562 and K562-derived multidrug resistant cell line K562/AO2. However, IL-15R negative cell line Jurkat was insensitive to IL15M-PEdelta293. In addition, the toxic effect of IL15M-PEdelta293 on K562 was completely blocked by excessive amount of recombinant human IL-15. These results demonstrated that the selective cytotoxicity of IL15M-PEdelta293 correlated with the appropriate IL-15R expression on target cells. The present data suggest that the chimeric toxin constructed in this report may have therapeutic potential in the treatment of diseases associated with abnormal expression of IL-15/IL-15R, even in the treatment of chemotherapy refractory tumors.
Escherichia coli
;
genetics
;
metabolism
;
Exotoxins
;
biosynthesis
;
genetics
;
Genetic Vectors
;
genetics
;
metabolism
;
Humans
;
Interleukin-15
;
antagonists & inhibitors
;
biosynthesis
;
genetics
;
K562 Cells
;
Pseudomonas aeruginosa
;
genetics
;
metabolism
;
Receptors, Interleukin-15
;
metabolism
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
pharmacology
3.Construction of NKG2D CAR-NK92 cells and its killing effect on multiple myeloma cells.
Jing LONG ; Rong ZHENG ; Sishi YE ; Shanwen KE ; Deming DUAN ; Cheng WEI ; Jimin GAO
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):577-585
Objective This study aims to construct and identify the chimeric antigen receptor NK92 (CAR-NK92) cells targeting NKG2D ligand (NKG2DL) (secreting IL-15Ra-IL-15) and verify the killing activity of NKG2D CAR-NK92 cells against multiple myeloma cells. Methods The extracellular segment of NKG2D was employed to connect 4-1BB and CD3Z, as well as IL-15Ra-IL-15 sequence to obtain a CAR expression framework. The lentivirus was packaged and transduced into NK92 cells to obtain NKG2D CAR-NK92 cells. The proliferation of NKG2D CAR-NK92 cells was detected by CCK-8 assay, IL-15Ra secretion was detected by ELISA and killing efficiency was detected by lactate dehydrogenase (LDH) assay. The molecular markers of NKp30, NKp44, NKp46, the ratio of apoptotic cell population, CD107a, and the secretion level of granzyme B and perforin were detected using flow cytometry. In addition, the cytotoxic mechanism of NKG2D CAR-NK92 cells on the tumor was verified by measuring the degranulation ability. Moreover, after NKG2D antibody inhibited effector cells and histamine inhibited tumor cells, LDH assay was utilized to detect the effect on cell-killing efficiency. Finally, the multiple myeloma tumor xenograft model was constructed to verify its anti-tumor activity in vivo. Results Lentiviral transduction significantly increased NKG2D expression in NK92 cells. Compared with NK92 cells, the proliferation ability of NKG2D CAR-NK92 cells was weaker. The early apoptotic cell population of NKG2D CAR-NK92 cells was less, and NKG2D CAR-NK92 cells had stronger cytotoxicity to multiple myeloma cells. Additionally, IL-15Ra secretion could be detected in its culture supernatant. NKp44 protein expression in NKG2D CAR-NK92 cells was clearly increased, demonstrating an enhanced activation level. Inhibition test revealed that the cytotoxicity of CAR-NK92 cells to MHC-I chain-related protein A (MICA) and MICB-positive tumor cells was more dependent on the interaction between NKG2D CAR and NKG2DL. After stimulating NKG2D CAR-NK92 cells with tumor cells, granzyme B and perforin expression increased, and NK cells obviously upregulated CD107α. Furthermore, multiple myeloma tumor xenograft model revealed that the tumors of mice treated with NKG2D CAR-NK92 cells were significantly reduced, and the cell therapy did not sensibly affect the weight of the mice. Conclusion A type of CAR-NK92 cell targeting NKG2DL (secreting IL-15Ra-IL-15) is successfully constructed, indicating the effective killing of multiple myeloid cells.
Humans
;
Mice
;
Animals
;
Receptors, Chimeric Antigen/genetics*
;
Interleukin-15
;
NK Cell Lectin-Like Receptor Subfamily K/metabolism*
;
Granzymes
;
Cell Line, Tumor
;
Multiple Myeloma/therapy*
;
Perforin
4.Out-sourcing for Trans-presentation: Assessing T Cell Intrinsic and Extrinsic IL-15 Expression with Il15 Gene Reporter Mice
Joo Young PARK ; Davinna L LIGONS ; Jung Hyun PARK
Immune Network 2018;18(1):e13-
IL-15 is a cytokine of the common γ-chain family that is critical for natural killer (NK), invariant natural killer T (iNKT), and CD8 memory T cell development and homeostasis. The role of IL-15 in regulating effector T cell subsets, however, remains incompletely understood. IL-15 is mostly expressed by stromal cells, myeloid cells, and dendritic cells (DCs). Whether T cells themselves can express IL-15, and if so, whether such T cell-derived IL-15 could play an autocrine role in T cells are interesting questions that were previously addressed but answered with mixed results. Recently, three independent studies described the generation of IL-15 reporter mice which facilitated the identification of IL-15-producing cells and helped to clarify the role of IL-15 both in vitro and in vivo. Here, we review the findings of these studies and place them in context of recent reports that examined T cell-intrinsic IL-15 expression during CD4 effector T cell differentiation.
Animals
;
Cell Differentiation
;
Dendritic Cells
;
Homeostasis
;
Humans
;
In Vitro Techniques
;
Inflammation
;
Interleukin-15
;
Memory
;
Mice
;
Myeloid Cells
;
Receptors, Cytokine
;
Stromal Cells
;
T-Lymphocyte Subsets
;
T-Lymphocytes
;
Th17 Cells
5.IL-2 and IL-15 dependent thymic development of Foxp3-expressing regulatory T lymphocytes.
Cécile APERT ; Paola ROMAGNOLI ; Joost P M VAN MEERWIJK
Protein & Cell 2018;9(4):322-332
Immunosuppressive regulatory T lymphocytes (Treg) expressing the transcription factor Foxp3 play a vital role in the maintenance of tolerance of the immune-system to self and innocuous non-self. Most Treg that are critical for the maintenance of tolerance to self, develop as an independent T-cell lineage from common T cell precursors in the thymus. In this organ, their differentiation requires signals from the T cell receptor for antigen, from co-stimulatory molecules, as well as from cytokine-receptors. Here we focus on the cytokines implicated in thymic development of Treg, with a particular emphasis on the roles of interleukin-2 (IL-2) and IL-15. The more recently appreciated involvement of TGF-β in thymic Treg development is also briefly discussed. Finally, we discuss how cytokine-dependence of Treg development allows for temporal, quantitative, and potentially qualitative modulation of this process.
Animals
;
Cell Differentiation
;
genetics
;
Cytokines
;
immunology
;
Forkhead Transcription Factors
;
genetics
;
immunology
;
Gene Expression Regulation
;
Immune Tolerance
;
genetics
;
Interleukin-15
;
genetics
;
immunology
;
Interleukin-2
;
genetics
;
immunology
;
Mice
;
Receptors, Antigen, T-Cell
;
genetics
;
immunology
;
T-Lymphocytes, Regulatory
;
immunology
;
Transforming Growth Factor beta
;
genetics
;
immunology
6.Effect of IL-15 on the proliferation, differentiation and anti-apoptosis of CD34+ cells in patients with MDS.
Ming-Zheng CHENG ; Zhong-Lu YE ; Kang-Rong CAI ; Xiu-Lan HUANG ; Ri-Ling CHENG ; Han-Rong CHEN
Journal of Experimental Hematology 2005;13(4):620-623
To study the effect of interleukin-15 (IL-15) on the proliferation, differentiation and apoptosis of MDS CD34(+) cells, CD34(+) cells of high enrichment were separated by MACS system, and cultured in liquid media with different concentration of IL-15 in treated group and without IL-15 in the control group. Apoptosis of hematopoietic precursors was assayed by propidium iodine staining and cell by FCM, and the other MDS CD34(+) cells were stained by cytochemical staining after culture. The results showed that after culture with IL-15 the proliferation and differentiation of MDS CD34(+) cells were obviously promoted. It was found the every lineage of mature cells developed, the expressions of cell surface antigens CD71, CD33 and CD19 all increased in the MDS CD34(+) cell treated with IL-15. It is suggested that IL-15 stimulates the proliferation and differentiation of MDS CD34(+) cells, and partly shows anti-apoptosis effects which may be applicable to the therapy MDS.
Antigens, CD
;
immunology
;
Antigens, CD19
;
immunology
;
Antigens, CD34
;
immunology
;
Antigens, Differentiation, Myelomonocytic
;
immunology
;
Apoptosis
;
drug effects
;
Bone Marrow Cells
;
drug effects
;
immunology
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Differentiation
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Flow Cytometry
;
Humans
;
Interleukin-15
;
pharmacology
;
Microscopy, Fluorescence
;
Myelodysplastic Syndromes
;
blood
;
immunology
;
pathology
;
Receptors, Transferrin
;
immunology
;
Sialic Acid Binding Ig-like Lectin 3
7.The Establishment and Identification of Acute Myeloid Leukemia NOD-SCID-IL2rg
Wei-Ya ZHANG ; Gao-Chun ZENG ; Xiao-Mei CHEN ; Su-Xia GENG ; Yu-Lian WANG ; Qiong LUO ; Liu-Ping LUO ; Pei-Long LAI ; Jian-Yu WENG ; Xin DU
Journal of Experimental Hematology 2021;29(5):1429-1435
OBJECTIVE:
To establish the in vivo traceable acute myeloid leukemia mice model with Luciferase-Expressing KG1a Cells.
METHODS:
KG1a cells with stable luciferase gene expression (called as KG1a-Luc cells) were constructed by lentivirus transfection, then sifted out by puromycin. Eighteen male NOD-SCID-IL2rg
RESULTS:
KG1a cells expressing luciferase stably were successfully obtained. The tumor luminescence wildly spread at day 17 captured by in vivo imaging. The KG1a-Luc tumor cells could be detected in the peripheral blood of the mice, with the average percentage of (16.27±6.66)%. The morphology and pathology result showed that KG1a-Luc cells infiltrate was detected in bone marrow, spleens and livers. The survival time of the KG1a-Luc mice was notably shorter as compared with those in the control group, the median survival time was 30.5 days (95%CI: 0.008-0.260).
CONCLUSION
The acute myeloid leukemia NOD-SCID-IL2rg
Animals
;
Disease Models, Animal
;
Interleukin Receptor Common gamma Subunit
;
Leukemia, Myeloid, Acute
;
Luciferases/genetics*
;
Male
;
Mice
;
Mice, Inbred NOD
;
Mice, SCID
8.Efficient derivation of embryonic stem cells from NOD-scid Il2rg (-/-) mice.
Kang LIU ; Riguo FANG ; Haibo LI ; Weifeng YANG ; Zhenchuan MIAO ; Jinhua WEN ; Hongkui DENG
Protein & Cell 2015;6(12):916-918
9.Screening of small molecule inhibitors of IL-15Rα using molecular docking and surface plasmon resonance technology.
Yi HE ; Hai-Xia WANG ; Min LIU ; Jian YANG ; Zuo-Li SUN
Acta Physiologica Sinica 2023;75(5):623-628
The study aims to explore the active molecules of traditional Chinese medicine that specifically bind to interleukin-15 receptor α (IL-15Rα) using molecular docking and surface plasmon resonance (SPR) technology. AutoDock molecular docking software was used to perform simulated docking of more than 3 000 compounds from 48 traditional Chinese medicines at IL-15Rα and screen the specific binding compounds. Then Biocore T200 biomolecular interaction analysis system of SPR was used to confirm the binding specificity of the selected target compounds. Finally, the biological effects of the target compounds on IL-15Rα were verified by cell biological experiments. The results showed that neoprzewaquinone A (Neo) possessed the highest specific binding affinity among the active molecules from traditional Chinese medicine, and the dissociation constant (KD) value was (0.62 ± 0.20) µmol/L. The results of cell experiment showed that Neo significantly inhibited the proliferation of Mo7e cells induced by IL-15, and the IC50 was 1.075 µmol/L, approximately 1/120 of the IC50 of Cefazolin (IL-15 specific antagonist). These results suggest that Neo is a specific inhibitor of IL-15Rα and may be a potential active drug for the treatment of diseases related to the dysfunction of the IL-15Rα signaling.
Molecular Docking Simulation
;
Interleukin-15/pharmacology*
;
Surface Plasmon Resonance
;
Interleukin-15 Receptor alpha Subunit/metabolism*
;
Protein Binding
10.Mutation analysis and prenatal diagnosis of a Chinese family with X-linked severe combined immunodeficiency.
Qing-hua WU ; Hui-rong SHI ; Ning LIU ; Miao JIANG ; Ning LU ; Zhen-hua ZHAO ; Xiang-dong KONG
Chinese Journal of Pediatrics 2012;50(11):851-854
OBJECTIVETo analyze the mutation of IL2RG gene in a Chinese family with a birth history of a dead child suspected of X-linked severe combined immunodeficiency (X-SCID), and to perform prenatal diagnosis with DNA sequencing.
METHODBlood samples of the parents of the dead child and chorionic villi at gestational age 11 weeks were collected. Eight exons comprising the open reading frame as well as their exon/intron boundaries of IL2RG gene were analyzed by PCR and bi-directional sequencing.
RESULTA heterozygous nucleotide substitution c.690C > T (R226C) in exon 5 was detected in the mother, but not in the father. In the second pregnancy of the mother, the mutation of R226C was not detected in the male fetus by prenatal diagnosis, and the heterozygous mutation was detected in the female fetus of the third pregnancy. The reliability of the prenatal genetic diagnosis was confirmed by the one-year follow-up after the neonates were born.
CONCLUSIONThe mutation of c.690C>T in IL2RG gene may be the pathologic cause of the proband with X-SCID. DNA sequencing combining sex determination is a valid strategy for prenatal diagnosis of X-SCID.
Adult ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; DNA Mutational Analysis ; DNA Primers ; Exons ; genetics ; Female ; Heterozygote ; Humans ; Infant ; Interleukin Receptor Common gamma Subunit ; genetics ; Male ; Mutation ; Pedigree ; Polymerase Chain Reaction ; Pregnancy ; Prenatal Diagnosis ; methods ; X-Linked Combined Immunodeficiency Diseases ; diagnosis ; genetics