1.The Molecular Mechanism of HCQ Reversing Immune Mediators Dysregulation in Severe Infection after Chemotherapy in Acute Myeloid Leukemia and Inducing Programmed Death of Leukemia Cells.
Qing-Lin XU ; Yan-Quan LIU ; He-Hui ZHANG ; Fen WANG ; Zuo-Tao LI ; Zhi-Min YAN ; Shu-Juan CHEN ; Hong-Quan ZHU
Journal of Experimental Hematology 2025;33(4):931-938
OBJECTIVE:
To explore the effects of hydroxychloroquine (HCQ) on immune mediators dysregulation in severe infection after chemotherapy in acute myeloid leukemia (AML) and its molecular mechanism.
METHODS:
Bone marrow or peripheral blood samples of 36 AML patients with severe infection (AML-SI) and 29 AML patients without infection (AML-NI) after chemotherapy were collected from the First Affiliated Hospital of Gannan Medical University from August 2022 to June 2023. In addition, the peripheral blood of 21 healthy subjects from the same period in our hospital was selected as the control group. The mRNA expressions of CXCL12, CXCR4 and CXCR7 were detected by RT-qPCR technology, and the levels of IL-6, IL-8 and TNF-α were detected by ELISA. Leukemia-derived THP-1 cells were selected and constructed as AML disease model. At the same time, bone marrow mesenchymal stem cells (BM-MSCs) from AML-SI patients were co-cultured with THP-1 cells and divided into Mono group and Co-culture group. THP-1 cells were treated with different concentration gradients of HCQ. The cell proliferation activity was subsequently detected by CCK-8 method and apoptosis was detected by Annexin V/PI double staining flow cytometry. ELISA was used to detect the changes of IL-6, IL-8 and TNF-α levels in the supernatant of the cell co-culture system, RT-qPCR was used to detect the mRNA expression changes of the core members of the CXCL12-CXCR4/7 regulatory axis, and Western blot was used to detect the expressions of apoptosis regulatory molecules and related signaling pathway proteins.
RESULTS:
CXCL12, CXCR4, CXCR7, as well as IL-6, IL-8, and TNF-α were all abnormally increased in AML patients, and the increases were more significant in AML-SI patients (P <0.01). Furthermore, there were statistically significant differences between AML-NI patients and AML-SI patients (all P <0.05). HCQ could inhibit the proliferation and induce the apoptosis of THP-1 cells, but the low concentration of HCQ had no significant effect on the killing of THP-1 cells. When THP-1 cells were co-cultured with BM-MSCs of AML patients, the levels of IL-6, IL-8 and TNF-α in the supernatance of Co-culture group were significantly higher than those of Mono group (all P <0.01). After HCQ intervention, the levels of IL-6, IL-8 and TNF-α in cell culture supernatant of Mono group were significantly decreased compared with those before intervention (all P <0.01). Similarly, those of Co-culture group were also significantly decreased (all P <0.001). However, the expression of the core members of the CXCL12-CXCR4/7 regulatory axis was weakly affected by HCQ. HCQ could up-regulate the expression of pro-apoptotic protein Bax, down-regulate the expression of anti-apoptotic protein Bcl-2, as well as simultaneously promote the hydrolytic activation of Caspase-3 when inhibiting the activation level of TLR4/NF-κB pathway, then induce the programmed death of THP-1 cells after intervention.
CONCLUSION
The core members of CXCL12-CXCR4/7 axis and related cytokines may be important mediators of severe infectious immune disorders in AML patients. HCQ can inhibit cytokine levels to reverse immune mediators dysregulation and suppress malignant biological characteristics of leukemia cells. The mechanisms may be related to regulating the expression of Bcl-2 family proteins, hydrolytically activating Caspase-3 and inhibiting the activation of TLR4/NF-κB signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/immunology*
;
Hydroxychloroquine/pharmacology*
;
Receptors, CXCR4/metabolism*
;
Apoptosis/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Chemokine CXCL12/metabolism*
;
Interleukin-8/metabolism*
;
Interleukin-6/metabolism*
;
Receptors, CXCR/metabolism*
;
Mesenchymal Stem Cells
;
THP-1 Cells
2.Tuihuang Mixture improves α‑naphthylisothiocyanate-induced cholestasis in rats by inhibiting NLRP3 inflammasomes via regulating farnesoid X receptor.
Zhengwang ZHU ; Linlin WANG ; Jinghan ZHAO ; Ruixue MA ; Yuchun YU ; Qingchun CAI ; Bing WANG ; Pingsheng ZHU ; Mingsan MIAO
Journal of Southern Medical University 2025;45(4):718-724
OBJECTIVES:
To study the therapeutic mechanism of Tuihuang Mixture against cholestasis.
METHODS:
Forty-eight Wistar rats were randomized equally into blank group, model group, ursodeoxycholic acid group and Tuihuang Mixture group. Except for those in the blank group, all the rats were given α‑naphthylisothiocyanate (ANIT) to establish rat models of cholestasis, followed by treatments with indicated drugs or distilled water. Serum levels of ALT, AST, ALP, γ-GT, TBA and TBIL of the rats were determined, and hepatic expressions IL-1β, IL-18, FXR, NLRP3, ASC, Caspase-1 and GSDMD were detected using q-PCR, ELISA or Western blotting. Histopathological changes of the liver tissues were observed using HE staining.
RESULTS:
The rat models of cholestasis had significantly increased serum levels of ALT, AST, ALP, γ-GT, TBA and TBIL with increased mRNA and protein expressions of IL-1β and IL-18, decreased protein and mRNA expressions of FXR, and increased protein expressions of NLRP3 and Caspase-1 and mRNA expressions of NLRP3, ASC, Caspase-1 and GSDMD in the liver tissue, showing also irregular arrangement of liver cells, proliferation of bile duct epithelial cells and inflammatory cells infiltration. Treatment of the rat models with Tuihuang Mixture significantly decreased serum levels of ALT, AST, ALP, γ-GT, TBA and TBIL, lowered IL-1β and IL-18 and increased FXR protein and mRNA expressions, and reduced NLRP3, ASC, Caspase-1 and GSDMD proteins and NLRP3, ASC and Caspase-1 mRNA expressions in the liver tissue. Tuihuang Mixture also significantly alleviated hepatocyte injury, bile duct epithelial cell proliferation and inflammatory cell infiltration in the liver of the rat models.
CONCLUSIONS
Tuihuang Mixture can effectively improve cholestasis in rats possibly by inhibiting NLRP3 inflammatosome-mediated pyroptosis via regulating FXR.
Animals
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Rats
;
Receptors, Cytoplasmic and Nuclear/metabolism*
;
Cholestasis/drug therapy*
;
Rats, Wistar
;
Inflammasomes/metabolism*
;
1-Naphthylisothiocyanate
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Interleukin-18/metabolism*
;
Caspase 1/metabolism*
;
Interleukin-1beta/metabolism*
;
Liver/metabolism*
3.Efficacy and safety of fourth-generation CD19 CAR-T expressing IL7 and CCL19 along with PD-1 monoclonal antibody for relapsed or refractory large B-cell lymphoma.
Teng YU ; Hui LIU ; Wen LEI ; Pan Pan CHEN ; Ai Qi ZHAO ; Xiang Gui YUAN ; Ji Min GAO ; Wen Bin QIAN
Chinese Journal of Hematology 2023;44(10):820-824
Objective: This study systematically explore the efficacy and safety of fourth-generation chimeric antigen receptor T-cells (CAR-T), which express interleukin 7 (IL7) and chemokine C-C motif ligand 19 (CCL19) and target CD19, in relapsed or refractory large B-cell lymphoma. Methods: Our center applied autologous 7×19 CAR-T combined with tirelizumab to treat 11 patients with relapsed or refractory large B-cell lymphoma. The efficacy and adverse effects were explored. Results: All 11 enrolled patients completed autologous 7×19 CAR-T preparation and infusion. Nine patients completed the scheduled six sessions of tirolizumab treatment, one completed four sessions, and one completed one session. Furthermore, five cases (45.5%) achieved complete remission, and three cases (27.3%) achieved partial remission with an objective remission rate of 72.7%. Two cases were evaluated for disease progression, and one died two months after reinfusion because of uncontrollable disease. The median follow-up time was 31 (2-34) months, with a median overall survival not achieved and a median progression-free survival of 28 (1-34) months. Two patients with partial remission achieved complete remission at the 9th and 12th months of follow-up. Therefore, the best complete remission rate was 63.6%. Cytokine-release syndrome and immune effector cell-associated neurotoxicity syndrome were controllable, and no immune-related adverse reactions occurred. Conclusion: Autologous 7×19 CAR-T combined with tirelizumab for treating relapsed or refractory large B-cell lymphoma achieved good efficacy with controllable adverse reactions.
Humans
;
Antibodies, Monoclonal/therapeutic use*
;
Antigens, CD19
;
Chemokine CCL19
;
Immunotherapy, Adoptive
;
Interleukin-7
;
Lymphoma, Large B-Cell, Diffuse/therapy*
;
Programmed Cell Death 1 Receptor
;
Receptors, Chimeric Antigen
4.Downregulation of IL-18 Expression in the Gut by Metformin-induced Gut Microbiota Modulation
Heetae LEE ; Jiyeon KIM ; Jinho AN ; Sungwon LEE ; Dohyun CHOI ; Hyunseok KONG ; Youngcheon SONG ; Il Ho PARK ; Chong Kil LEE ; Kyungjae KIM
Immune Network 2019;19(4):e28-
IL-18 is a crucial pro-inflammatory cytokine that mediates chronic intestinal inflammation. Metformin, an anti-diabetic drug, was reported to have ameliorative effects on inflammatory bowel disease. Recently, the mechanism of action of metformin was explained as a modulation of gut microbiota. In this study, fecal microbiota transplantation (FMT) using fecal material from metformin-treated mice was found to upregulate the expression of GLP-1 and pattern-recognition receptors TLR1 and TLR4 for the improvement in hyperglycemia caused by a high-fat diet. Further, FMT downregulated the expression of the inflammatory cytokine IL-18. Within the genera Akkermansia, Bacteroides, and Butyricimonas, which were promoted by metformin therapy, Butyricimonas was found to be consistently abundant following FMT. Our findings suggest that modulation of gut microbiota is a key factor for the anti-inflammatory effects of metformin which is used for the treatment of hyperglycemia.
Animals
;
Bacteroides
;
Diet, High-Fat
;
Down-Regulation
;
Fecal Microbiota Transplantation
;
Gastrointestinal Microbiome
;
Glucagon-Like Peptide 1
;
Hyperglycemia
;
Inflammation
;
Inflammatory Bowel Diseases
;
Interleukin-18
;
Metformin
;
Mice
;
Toll-Like Receptors
5.Activation of the JAK/STAT signal pathway may be involved in DNA damage of A549 cells induced by X-ray.
Li-Qiao PENG ; Cheng-Hao LI ; Bing MAO
Acta Physiologica Sinica 2019;71(5):698-704
The aim of this study was to investigate the relationship between the effects of different doses of X-rays on DNA damage and JAK/STAT signaling pathway activation in A549 cells. The A549 cells were radiated with X-rays at doses of 2, 4, and 8 Gy. The proliferation of A549 cells was detected by CCK8 method. The content of interleukin 6 (IL-6) in culture medium at different time points after irradiation was detected by enzyme-linked immunoassay, and the expression levels of IL-6 receptor (IL-6R) and p53 binding protein 1 (53BP1) were detected by immunofluorescent staining. The expression levels of JAK2, p-JAK2, STAT3 and p-STAT3 were detected by Western blot. The results showed that, compared with the control group, X-ray irradiation reduced the cellular proliferation, up-regulated the expression of 53BP1, increased the IL-6 content in the medium supernatant, and up-regulated the protein expression levels of IL-6R, JAK2, p-JAK2, STAT3, and p-STAT3. The above effects of X-ray irradiation were dose-dependent. These results suggest that the mechanism by which X-rays cause DNA damage in A549 cells may involve activation of the JAK/STAT signaling pathway.
A549 Cells
;
DNA Damage
;
radiation effects
;
Humans
;
Janus Kinase 2
;
metabolism
;
Receptors, Interleukin-6
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
;
Signal Transduction
;
Tumor Suppressor p53-Binding Protein 1
;
metabolism
;
X-Rays
6.Peripheral Biomarkers for First-Episode Psychosis—Opportunities from the Neuroinflammatory Hypothesis of Schizophrenia
Nuno TROVÃO ; Joana PRATA ; Orlando VONDOELLINGER ; Susana SANTOS ; Mário BARBOSA ; Rui COELHO
Psychiatry Investigation 2019;16(3):177-184
OBJECTIVE: Schizophrenia is a disabling disorder of unknown aetiology, lacking definite diagnostic method and cure. A reliable biological marker of schizophrenia is highly demanded, for which traceable immune mediators in blood could be promising candidates. We aimed to gather the best findings of neuroinflammatory markers for first-episode psychosis (FEP). METHODS: We performed an extensive narrative review of online literature on inflammation-related markers found in human FEP patients only. RESULTS: Changes to cytokine levels have been increasingly reported in schizophrenia. The peripheral levels of IL-1 (or its receptor antagonist), soluble IL-2 receptor, IL-4, IL-6, IL-8, and TNF-α have been frequently reported as increased in FEP, in a suggestive continuum from high-risk stages for psychosis. Microglia and astrocytes establish the link between this immune signalling and the synthesis of noxious tryptophan catabolism products, that cause structural damage and directly hamper normal neurotransmission. Amongst these, only 3-hydroxykynurenine has been consistently described in the blood of FEP patients. CONCLUSION: Peripheral molecules stemming from brain inflammation might provide insightful biomarkers of schizophrenia, as early as FEP or even prodromal phases, although more time- and clinically-adjusted studies are essential for their validation.
Astrocytes
;
Biomarkers
;
Encephalitis
;
Humans
;
Interleukin-1
;
Interleukin-4
;
Interleukin-6
;
Interleukin-8
;
Metabolism
;
Methods
;
Microglia
;
Polytetrafluoroethylene
;
Psychotic Disorders
;
Receptors, Interleukin-2
;
Schizophrenia
;
Synaptic Transmission
;
Tryptophan
7.Association of a genetic polymorphism of IL1RN with risk of acute pancreatitis in a Korean ethnic group.
Jin Woo PARK ; Ja Sung CHOI ; Ki Joon HAN ; Sang Heun LEE ; Eui Joo KIM ; Jae Hee CHO
The Korean Journal of Internal Medicine 2018;33(6):1103-1110
BACKGROUND/AIMS: Several epidemiological studies have validated the association of interleukin gene polymorphisms with acute pancreatitis (AP) in different populations. However, there have been few studies in Asian ethnic groups. We aimed to investigate the relationships between inflammatory cytokine polymorphisms and AP as pilot research in a Korean ethnic group. METHODS: Patients who had been diagnosed with AP were prospectively enrolled. DNA was extracted from whole blood, and DNA sequencing was subsequently performed. Single-nucleotide polymorphisms (SNPs) of the interleukin 1β (IL1B), interleukin 1 receptor antagonist (IL1RN), and tumor necrosis factor α (TNFA) genes of patients with AP were compared to those of normal controls. RESULTS: Between January 2011 and January 2013, a total of 65 subjects were enrolled (40 patients with AP vs. 25 healthy controls). One intronic SNP (IL1RN −1129T>C, rs4251961) was significantly associated with the risk of AP (odds ratio, 0.304; 95% confidence interval, 0.095 to 0.967; p = 0.043). However, in our study, AP was not found to be associated with polymorphisms in the promoter regions of inflammatory cytokine genes, including IL1B (−118C>T, c47+242C>T, +3954C/T, and −598T>C) and TNFA (−1211T>C, −1043C>A, −1037C>T, −488G>A, and −418G>A). CONCLUSIONS: IL1RN −1129T>C (rs4251961) genotypes might be associated with a significant increase of AP risk in a Korean ethnic group.
Asian Continental Ancestry Group
;
DNA
;
Epidemiologic Studies
;
Ethnic Groups*
;
Genotype
;
Humans
;
Interleukins
;
Introns
;
Pancreatitis*
;
Polymorphism, Genetic*
;
Polymorphism, Single Nucleotide
;
Promoter Regions, Genetic
;
Prospective Studies
;
Receptors, Interleukin-1
;
Sequence Analysis, DNA
;
Tumor Necrosis Factor-alpha
8.Genome-Wide Association Studies of Autoimmune Thyroid Diseases, Thyroid Function, and Thyroid Cancer.
Endocrinology and Metabolism 2018;33(2):175-184
Thyroid diseases, including autoimmune thyroid diseases and thyroid cancer, are known to have high heritability. Family and twin studies have indicated that genetics plays a major role in the development of thyroid diseases. Thyroid function, represented by thyroid stimulating hormone (TSH) and free thyroxine (T4), is also known to be partly genetically determined. Before the era of genome-wide association studies (GWAS), the ability to identify genes responsible for susceptibility to thyroid disease was limited. Over the past decade, GWAS have been used to identify genes involved in many complex diseases, including various phenotypes of the thyroid gland. In GWAS of autoimmune thyroid diseases, many susceptibility loci associated with autoimmunity (human leukocyte antigen [HLA], protein tyrosine phosphatase, non-receptor type 22 [PTPN22], cytotoxic T-lymphocyte associated protein 4 [CTLA4], and interleukin 2 receptor subunit alpha [IL2RA]) or thyroid-specific genes (thyroid stimulating hormone receptor [TSHR] and forkhead box E1 [FOXE1]) have been identified. Regarding thyroid function, many susceptibility loci for levels of TSH and free T4 have been identified through genome-wide analyses. In GWAS of differentiated thyroid cancer, associations at FOXE1, MAP3K12 binding inhibitory protein 1 (MBIP)-NK2 homeobox 1 (NKX2-1), disrupted in renal carcinoma 3 (DIRC3), neuregulin 1 (NRG1), and pecanex-like 2 (PCNXL2) have been commonly identified in people of European and Korean ancestry, and many other susceptibility loci have been found in specific populations. Through GWAS of various thyroid-related phenotypes, many susceptibility loci have been found, providing insights into the pathogenesis of thyroid diseases and disease co-clustering within families and individuals.
Autoimmunity
;
Genes, Homeobox
;
Genetics
;
Genome-Wide Association Study*
;
Graves Disease
;
Hashimoto Disease
;
Humans
;
Leukocytes
;
Neuregulin-1
;
Phenotype
;
Protein Tyrosine Phosphatase, Non-Receptor Type 22
;
Receptors, Interleukin-2
;
T-Lymphocytes, Cytotoxic
;
Thyroid Diseases*
;
Thyroid Gland*
;
Thyroid Neoplasms*
;
Thyrotropin
;
Thyroxine
9.Aryl Hydrocarbon Receptor Ligands Indoxyl 3-sulfate and Indole-3-carbinol Inhibit FMS-like Tyrosine Kinase 3 Ligand-induced Bone Marrow-derived plasmacytoid Dendritic Cell Differentiation.
Won Bhin HWANG ; Da Jeong KIM ; Gap Soo OH ; Joo Hung PARK
Immune Network 2018;18(5):e35-
Aryl hydrocarbon receptor (AhR) regulates both innate and adaptive immune responses by sensing a variety of small synthetic and natural chemicals, which act as its ligands. AhR, which is expressed in dendritic cells (DCs), regulates the differentiation of DCs. However, effects of AhR on the differentiation of DCs are variable due to the heterogeneity of DCs in cell surface marker expression, anatomical location, and functional responses. The plasmacytoid DCs (pDCs), one of DC subsets, not only induce innate as well as adaptive immune responses by secreting type I interferons and pro-inflammatory cytokines, but also induce IL-10 producing regulatory T cell or anergy or deletion of antigen-specific T cells. We showed here that AhR ligands indoxyl 3-sulfate (I3S) and indole-3-carbinol (I3C) inhibited the development of pDCs derived from bone marrow (BM) precursors induced by FMS-like tyrosine kinase 3 ligand (Flt3L). I3S and I3C downregulated the expression of signal transducer and activator of transcription 3 (STAT3) and E2-2 (Tcf4). In mice orally treated with I3S and I3C, oral tolerance to dinitrofluorobenzene was impaired and the proportion of CD11c⁺B220⁺ cells in mesenteric lymph nodes was reduced. These data demonstrate that AhR negatively regulates the development of pDCs from BM precursors induced by Flt3L, probably via repressing the expression of STAT3.
Animals
;
Bone Marrow
;
Cell Differentiation
;
Cytokines
;
Dendritic Cells*
;
Dinitrofluorobenzene
;
fms-Like Tyrosine Kinase 3*
;
Immune Tolerance
;
Interferon Type I
;
Interleukin-10
;
Ligands*
;
Lymph Nodes
;
Mice
;
Population Characteristics
;
Receptors, Aryl Hydrocarbon*
;
STAT3 Transcription Factor
;
T-Lymphocytes
;
Vascular Endothelial Growth Factor Receptor-1*
10.Effects of Jinwu Jiangu recipe on IL-17/STAT3 signals in rheumatoid arthritis synoviocytes.
Wu-Kai MA ; Rong LI ; Qiao-Yi NING ; Ying HUANG ; Fang TANG ; Dao-Min LU ; Xue-Ming YAO
China Journal of Chinese Materia Medica 2018;43(3):585-590
This paper aimed to investigate the effects of Jinwu Jiangu recipe total extract on the IL-17/STAT3 signals in rheumatoid arthritis synovial fibroblasts(RASF). The primary RASFs were cultured by tissue piece method , and divided into blank control group, Jinwu Jiangu recipe low dose group, Jinwu Jiangu recipe middle dose group, Jinwu Jiangu recipe high dose group, and tripterygium glycosides control group. They were then treated with corresponding serum free medium, different doses of Jinwu Jiangu recipe total extract(0.06, 0.6, 6.0 g·L⁻¹), and tripterygium glycosides(0.03 g·L⁻¹) respectively for 24 hours. The gene expression levels of RORα, RORγt, and STAT3 mRNA were detected by polymerase chain reaction(PCR), and the protein activity of IL-17R and pSTAT3 were measured by Western blot assay. The results showed that as compared with blank control group, the expression levels of RORα, RORγt, IL-17R and STAT3 mRNA in RASF were significantly declined(<0.01). As compared with tripterygium glycosides control group, Jinwu Jiangu recipe total extract middle dose group and high dose group can down-regulate the expression levels of RORα, RORγt, IL-17R and STAT3 mRNA(<0.05), and the effect was more obvious in high dose group(<0.01). As compared with blank control group, the protein expression levels of IL-17R and pSTAT3 in each treatment group were obviously decreased(<0.01). As compared with tripterygium glycosides control group, Jinwu Jiangu recipe high dose group had more obvious effect in down-regulating the protein expression of pSTAT3(<0.01). Therefore, Miao medicine Jinwu Jiangu recipe total extract can down-regulate the expressions of RORα, RORγt, and STAT3 mRNA, and inhibit the protein activity of IL-17R and pSTAT3 in RASF.
Arthritis, Rheumatoid
;
Cells, Cultured
;
Drugs, Chinese Herbal
;
pharmacology
;
Fibroblasts
;
Gene Expression Regulation
;
Humans
;
Nuclear Receptor Subfamily 1, Group F, Member 1
;
metabolism
;
Nuclear Receptor Subfamily 1, Group F, Member 3
;
metabolism
;
Receptors, Interleukin-17
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
;
Synovial Membrane
;
Synoviocytes
;
drug effects

Result Analysis
Print
Save
E-mail