1.Advances of research on vascular endothelial growth factor receptors in epidermal neoplasm.
Journal of Zhejiang University. Medical sciences 2009;38(4):422-426
Vascular endothelial growth factor (VEGF) exerts its biological functions by its specific VEGF receptors (VEGFRs), which includes VEGFR-1, VEGFR-2, VEGFR-3, neuropilin-1 and neuropilin-2. These VEGF receptors not only distribute in endothelial cells, but also in epidermal keratinocytes. VEGFRs may play a significant role in pathogenesis of the epidermal neoplasm and the VEGF-VEGFR signaling pathway may be a novel therapy target for neoplasm derived from epidermis.
Animals
;
Epidermis
;
metabolism
;
Humans
;
Neoplasms
;
metabolism
;
Neuropilins
;
genetics
;
metabolism
;
Receptors, Vascular Endothelial Growth Factor
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor Receptor-1
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor Receptor-2
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor Receptor-3
;
genetics
;
metabolism
2.Distribution and expression of transforming growth factor beta and their receptors in hypertrophic scar.
Luo LU ; Yu-lin CHEN ; Qing-guo ZHANG
Chinese Journal of Burns 2004;20(1):30-33
OBJECTIVETo explore the role of transforming growth factor beta (TGF beta) and their receptors (TGF beta-R) in the pathogenesis of hypertrophic scar.
METHODSSpecimens of normal skin and hypertrophic scar were harvested and the distribution and the expression of the TGF beta and TGF beta-R were determined by immunohistochemistry and in situ hybridization method.
RESULTSThe expressions of TGF beta and TGF beta-RII in normal skin were higher than the expression of TGF beta 1, TGF beta 2 and TGF-RI. But in hypertrophic scar the results were on the contrary. The mRNA expressions of TGF beta 1, TGF beta 2 and TGFRI were evidently increased with decreased mRNA expression of TGF-beta 3 and TGFR II in the hypertrophic scar when compared with those in the normal skin.
CONCLUSIONThe expression of TGF-beta (beta 1, beta 2, beta 3) and their receptors in different levels during the process of wound healing might be related to the formation of hypertrophic scars.
Cicatrix, Hypertrophic ; genetics ; metabolism ; Humans ; Immunohistochemistry ; In Situ Hybridization ; RNA, Messenger ; genetics ; metabolism ; Receptors, Transforming Growth Factor beta ; genetics ; metabolism ; Skin ; metabolism ; pathology ; Transforming Growth Factor beta ; genetics ; metabolism
3.Role of TGF-beta1 and TGF-beta Type II Receptor in Gastric Cancer.
Dong Il PARK ; Hee Jung SON ; Sang Yong SONG ; Won Hyeok CHOE ; Yun Jeong LIM ; Sang Jong PARK ; Jae J KIM ; Young Ho KIM ; Poong Lyul RHEE ; Seung Woon PAIK ; Jong Chul RHEE ; Kyoo Wan CHOI
The Korean Journal of Internal Medicine 2002;17(3):160-166
BACKGROUND: TGF - beta is known as a cell growth inhibitory factor to suppress almost all cells, including the epithelial cell. Unlike normal cells, cancer cells are not affected by TGF- beta growth inhibitory action and the lack of TGF- beta receptor expression or mutation is being reported as its mechanism, which is rarely studied in Korea. Therefore, we investigated this study to clarify the role of TGF - beta I and TGF - beta II receptors in gastric cancer. METHODS: 23 cases that underwent operations for gastric cancer provided RNA collected from their carcinoma tissues and adjacent normal tissues. We investigated the level of TGF - beta 1 and T beta R-II mRNA expression with semi- quantitatively reverse transcription PCR and analyzed the correlation with prognostic factors, such as tumor size, depth of invasion, tumor differentiation and lymph-node metastasis. RESULTS: (1) TGF- beta I and T beta R-II mRNA were expressed in all carcinoma tissues and adjacent normal tissues of the 23 cases without statistical difference in the level of the expression. (2) The level of TGF - beta 1 mRNA expression was higher in patients with gastric cancer invaded only at the mucosa and submucosa than in patients with gastric cancer invaded over muscular propria, and also higher in the patients without lymph-node metastasis or perineural invasion than in the patients with lymph-node metastasis or perineural invasion. There was no significant correlation between the level of T beta R-II mRNA expression and several parameters, such as age, gender, tumor size, location, differentiation, Lauren's classification and vascular invasion. (3) There was a significant correlation between the level of TGF - beta 1 and T beta R-II mRNA expression in carcinoma tissues. CONCLUSION: It indicated that TGF - beta 1 mRNA expression in gastric cancer might concern the early stage of gastric carcinogenesis and, unlike the earlier reports, it was higher in patients with early gastric cancer, negative lymph-nodes or negative perineural invasion. Further studies are required to clarify the role of TGF - beta 1 in gastric carcinogenesis with more patients.
Female
;
Human
;
Male
;
Middle Age
;
Prognosis
;
RNA, Messenger/genetics/metabolism
;
Receptors, Transforming Growth Factor beta/*genetics
;
Stomach Neoplasms/*genetics/metabolism
;
Transforming Growth Factor beta/metabolism
5.Antitumor effect of natural killer cells in vitro by blocking transforming growth factor-β signaling.
Bo YANG ; Hui LIU ; Li-ya ZHANG ; Jin-yu LI ; Li BAI ; Sheng-jie SUN ; Shun-chang JIAO
Acta Academiae Medicinae Sinicae 2010;32(4):433-437
OBJECTIVETo investigate the antitumor effect of natural killer (NK) cells on human colorectal cancer cells HT-29 in vitro by blocking transforming growth factor-β (TGF-β) signaling in NK cells transfected with vector containing dominant negative TGF-β type 2 receptor (DNTβR2).
METHODSTGF-β1 was added at the final concentration of 10 ng/ml for HT-29 cells. Primary NK cells were transfected with recombinant plasmid pIRES2-AcGFP-DNTβR2 and control plasmid pIRES2-AcGFP using Amaxa Nucleofector technology respectively. The cytotoxicity of these two types of NK cells to HT-29 cells was detected and analyzed by cell counting kit-8.
RESULTSThe transfection efficiency of primary NK cells was 18.85% for the plasmid pIRES2-AcGFP-DNTβR2 and 35.28% for the control plasmid pIRES2-AcGFP. The expression of DNTβR2 in NK cells was confirmed by Western blotting and RT-PCR. Primary NK cells displayed significantly lower cytotoxicity against HT-29 cells incubated with TGF-β1 than that without TGF-β1 (effect-target cell ratio 10:1,14.40%∓ 2.00% vs. 26.14% ∓ 2.50%, P > 0.05; effect-target cell ratio 20:1, 19.18% ∓ 2.49% vs. 40.81% ∓ 3.50%, P > 0.05). The cytotoxicity of NK cells transfected with DNTβR2 vector was significantly higher than that with control vector against HT-29 cells cultured with 10 ng/ml TGF-β1 (effect-target cell ratio 10:1, 21.17% ∓ 2.49% vs. 11.48% ∓ 1.11% ,P > 0.05; and effect-target cell ratio 20:1, 35.30% ∓ 3.78% vs. 17.19% ∓ 2.29%, P > 0.05).
CONCLUSIONNK cells transfected with DNTβR2 vector show better antitumor effect, which may provide new method for NK-based adoptive immunotherapy for cancer.
HT29 Cells ; Humans ; Killer Cells, Natural ; immunology ; metabolism ; Plasmids ; genetics ; Receptors, Transforming Growth Factor beta ; genetics ; Transfection ; Transforming Growth Factor beta ; metabolism ; pharmacology
6.Expression of vascular endothelial growth factor and its receptors in endometrial carcinoma.
Haiyan WANG ; Guian CHEN ; Bo ZHANG
Chinese Journal of Pathology 2002;31(5):391-395
OBJECTIVETo study the expression of vascular endothelial growth factor (VEGF) and its receptors, the fms-like tyrosine-1 (flt-1) and kinase insert domain-containing receptor (KDR) in endometrial carcinoma and investigate the functions of VEGF and its receptors for endometrial carcinoma angiogenesis and its relation to the grade of tumor.
METHODSImmunocytochemistry and in situ hybridization technique were used to measure the level of VEGF, flt-1, KDR protein and mRNA in endometrial carcinoma tissue from 23 patients and endometrial samples from 6 normal menopausal women. A few endometrial carcinoma samples were homogenized for Western blot analysis. The blood vessel density was estimated by counting blood vessels stained with endothelial marker VIII factor.
RESULTSThe VEGF and its receptors were widely expressed in the cytoplasm of endothelial cells and tumor cells of endometrial carcinoma. The level of VEGF protein in endothelial cells and endometrial cancer cells of grade II and III tumor tissues was higher than that in grade I and normal menopausal endometrium (P < 0.05). VEGF mRNA did not show higher expression with the increase of tumor grade but its expression in normal tissue was lower than that in cancer (P < 0.05). The expression of flt-1 protein and mRNA in endothelial cells got higher in III than in grade II and I (P < 0.05), but invariable in cancer cells (P > 0.05), flt-1 expression in cancer was higher than that in normal menopausal endometrium either in endothelial cells or in cancer cells (P < 0.05). The expression of KDR protein in endothelial and cancer cell was high but did not alter with the increase of tumor grade (P > 0.05), the level of its mRNA was higher in cancer than that in normal tissue (P < 0.05). The microvascular density in grade III (48 +/- 12) was higher than that in grade II (26 +/- 16), grade I (27 +/- 14) and normal menopausal tissue (26 +/- 11, P < 0.05).
CONCLUSIONSThe expression pattern of VEGF, flt-1 and KDR protein and mRNA increased with the increase of tumor grade in endometrial carcinoma indicates that VEGF and its receptors contribute to the neovascularization of tumors and is one of the factors that relate to rapid tumor growth of endometrial carcinoma.
Endometrial Neoplasms ; metabolism ; physiopathology ; Endothelial Growth Factors ; genetics ; metabolism ; Extracellular Matrix Proteins ; metabolism ; Female ; Gene Expression ; Humans ; Intercellular Signaling Peptides and Proteins ; genetics ; metabolism ; Lymphokines ; genetics ; metabolism ; Neovascularization, Pathologic ; RNA, Messenger ; metabolism ; Receptors, Vascular Endothelial Growth Factor ; genetics ; metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factor Receptor-1 ; Vascular Endothelial Growth Factor Receptor-2 ; metabolism ; Vascular Endothelial Growth Factors
7.Expression of vascular endothelial cell growth factor and its receptor mRNA in breast cancer tissues.
Xiao LIU ; Ping FAN ; Shui WANG ; Zheng-yan WU
Chinese Journal of Surgery 2003;41(2):119-121
OBJECTIVETo study the expression of vascular endothelial cell growth factor (VEGF) and its receptor FLT-1, FLK-1 mRNA in breast cancer tissues and their correlation with clinicopathological factors.
METHODSThe expression of VEGF and and its receptor FLT-1, FLK-1 mRNA were analyzed by reverse transcription - polymerase chain reaction (RT-PCR) in the specimens from 47 patients with breast cancer and 11 patients with benign breast disease.
RESULTSVEGF121, 165 mRNA were all detected in malignant and benign breast tissues, with higher level, (0.420 +/- 0.133 and 0.291 +/- 0.094 respectively) in breast cancer tissues than in benign breast tissues, [0.196 +/- 0.067 (P = 0.000) and 0.206 +/- 0.058 (P = 0.001) respectively]. VEGF121 mRNA expression was stronger than VEGF165 mRNA expression (P = 0.000) in breast cancer tissues, whereas there is no significant difference in benign breast tissues (P = 0.666). FLT-1, FLK-1 mRNA were expressed in 18 of 47 (38.3%) and 12 of 47 (25.5%) breast cancer tissues respectively, but not in benign breast tissues. Moreover, no correlation was observed between the expression of VEGF121, VEGF165, FLT-1, FLK-1 mRNA in breast cancer tissues and patients' age, tumor size, lymph node metastasis, tumor stages, estrogen or progesterone receptor status.
CONCLUSIONThe expression of VEGF and its receptor FLT-1, FLK-1 mRNA were up-regulated in breast cancer tissues, suggesting its important role in angiogenesis of breast cancer.
Breast Neoplasms ; metabolism ; pathology ; Female ; Humans ; RNA, Messenger ; metabolism ; Receptors, Estrogen ; metabolism ; Receptors, Progesterone ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Vascular Endothelial Growth Factor A ; genetics ; metabolism ; Vascular Endothelial Growth Factor Receptor-1 ; genetics ; metabolism
8.Expression of foxp3 and glucocorticoid induced tumor necrosis factor receptor mRNA of T regulatory cell in food allergy animal models.
Qun WU ; Shan-chang YU ; Yun-zhu LI
Chinese Journal of Pediatrics 2008;46(4):302-303
Animals
;
Food Hypersensitivity
;
genetics
;
immunology
;
metabolism
;
Forkhead Transcription Factors
;
genetics
;
metabolism
;
Glucocorticoid-Induced TNFR-Related Protein
;
Mice
;
Mice, Inbred BALB C
;
RNA, Messenger
;
genetics
;
Receptors, Nerve Growth Factor
;
genetics
;
metabolism
;
Receptors, Tumor Necrosis Factor
;
genetics
;
metabolism
;
T-Lymphocytes, Regulatory
;
metabolism
9.Comparison of hyaluronidase expression, invasiveness and tubule formation promotion in ER (-) and ER (+) breast cancer cell lines in vitro.
Xiao-yi WANG ; Jin-xiang TAN ; Marc VASSE ; Bertrand DELPECH ; Guo-sheng REN
Chinese Medical Journal 2009;122(11):1300-1304
BACKGROUNDHyaluronidase (Hyase) is an enzyme which hydrolyses hyaluronan (HA), a large nonsulfated glycosaminoglycan. Several genes have been identified to code for hyaluronidases in humans. Its role has only recently been underlined in the invasion of prostate cancer, colonic cancer, and breast cancer. Moreover, the findings were in agreement with some experimental results which showed that HA-derived oligosaccharides had angiogenesis-promoting activity. All these findings prompted us to investigate factors that had been characterized as putative invasive factors in different human breast cancer-derived cell lines.
METHODSWe selected two series of human breast cancer-derived cell lines whose expression of estrogen receptors (ER) was previously published. Hyaluronidase secretion in culture medium and expression of matrix metallo-proteinase (MMP)-9, cathepsin-D (cath-D) and vascular endothelial growth factor (VEGF) by cells were determined. We also investigated cell invasiveness in the Matrigel invasion assay, and studied the capability of cancer cells to promote in vitro formation of tubules by endothelial cells.
RESULTSER(-) cells secreted significantly more hyaluronidase (P < 0.001) and expressed significantly more VEGF (P < 0.01), MMP-9 (P < 0.05) and cath-D (P < 0.0001) than ER(+) cells. Invasion through Matrigel by ER(-) Hyase(+) cells was significantly higher than that by ER(+) Hyase(-) cells (P < 0.05). In both cases, invasion was decreased by heparin (P < 0.05). When ECV-304 endothelial cells were co-cultivated in millicell chambers with cancer cells, ECV-304 cells were induced to form tubules. Tubule formation was demonstrated to be more prominent with ER(-) Hyase(+) cells than with ER(+) Hyase(-) cells (P < 0.05).
CONCLUSIONInvasive features of ER(-) breast cancer cells can be characterized in vitro by an invasive Matrigel assay, as the induction of tubule formation by ECV-304 endothelial cells, higher secretion of hyaluronidase, and higher expression of proteinases MMP-9, cath-D, and the angiogenesis promoting factor VEGF.
Breast Neoplasms ; metabolism ; Cathepsin D ; metabolism ; Cell Line, Tumor ; Humans ; Hyaluronoglucosaminidase ; metabolism ; Immunohistochemistry ; Matrix Metalloproteinase 9 ; metabolism ; Neoplasm Invasiveness ; genetics ; Receptors, Estrogen ; genetics ; Vascular Endothelial Growth Factor A ; metabolism
10.Influence of macrophages on the expression of vascular endothelial growth factor receptor mRNA, homeobox B2 mRNA, and integrin alpha nu beta3 in vascular endothelial strain.
Liang LIU ; Chang LIU ; Xiao-qi ZHANG ; Jia MING ; Xu-sheng LIU ; Hui XU ; Tian-min CHENG
Chinese Journal of Burns 2005;21(3):199-202
OBJECTIVETo investigate the influence of macrophages on the expression of the vascular endothelial growth factor (VEGF) receptor (KDR) mRNA, homeobox B2 (HOXB2) mRNA, and integrin alpha nu beta3 in vitro in vascular endothelial strain.
METHODSHuman umbilical vein cells (ECV304) were cultured in vitro and divided into 4 groups, i.e. (1) ECV304 group, (2) ECV304 + conA group [with conA (25 microg/ml in culture) added to ECV304], (3) ECV304 + U937 group (with 1 x 10(5)/ml of U937 cells added to 1 x 10(5)/ml ECV 304), (4) ECV304 + U937 + conA group [with 1 x 10(5)/ml of U937 cells and conA (25 microg/ml in culture)] groups. Forty-eight hours after culturing, the expression of integrin receptor alpha nu beta3 and the changes in the expression of KDR mRNA and HOXB2 mRNA in each group were determined by immunofluorescent technique and RT-PCR, respectively.
RESULTSThe expression of integrin receptor alpha nu beta3, KDR mRNA, and HOXB2 mRNA in ECV304 group were 6.7 +/- 1.5, 0.633 +/- 0.012, and 0.674 +/- 0.004, respectively, while those in ECV304 + U937 + conA group (10.2 +/- 1.7, 0.879 +/- 0.003, 0.947 +/- 0.003) were obviously more upregulated when compared with those in ECV304 group (P < 0.01). No difference in the above indices was found between ECV304 and ECV304 + conA, ECV304 + U937 groups (P > 0.05).
CONCLUSIONMacrophages activated by ConA can accelerate the proliferation, migration and adhesion to the basement membrane matrix of vascular endothelial cells through the influence on the expression of KDR mRNA, HOXB2 mRNA and integrin alpha nu beta3, and through this pathway the angiogenesis is modulated.
Cells, Cultured ; Endothelium ; cytology ; Gene Expression ; Homeodomain Proteins ; genetics ; Humans ; Integrin alphaVbeta3 ; genetics ; Macrophages ; metabolism ; RNA, Messenger ; genetics ; Receptors, Vascular Endothelial Growth Factor ; genetics ; Transcription Factors ; genetics