1.Study of autoantibodies against the G-protein-coupled beta 2- and alpha 1-adrenergic and AT1 receptors in patients with primary hypertension.
Lin ZHANG ; Liang CUI ; Guo-bin MIAO ; Wen-shu ZHAO ; Shu-yan WANG ; Xiu-lan LIU
Acta Academiae Medicinae Sinicae 2002;24(4):367-369
OBJECTIVETo determine whether autoantibodies against the cardiac G-protein-coupled beta 2- and alpha 1-adrenergic and AT1 receptors are related to patients with primary hypertension.
METHODSSynthetic peptides corresponding to amino acid sequences of the second extracellular loops of the beta 2- and alpha 1-adrenergic and AT1 receptors were respectively used as antigens to screen sera from patients with hypertensive heart diseases (n = 50) as well as simple hypertension (n = 40) and healthy blood donors (n = 40) using ELISA test.
RESULTSThe positive ratio of autoantibodies against beta 2 and alpha 1 and AT1 receptors in patients with hypertensive heart diseases were significantly higher than patients with simple hypertension and healthy donors. The geometric mean titers of autoantibodies against beta 2- and alpha 1-adrenergic and AT1 receptors had no difference between the patients with hypertensive heart diseases and the patients with simple hypertension, but the geometric mean titers of two groups were higher than healthy donors. In the patients with hypertensive heart diseases, 81.0% of the patients with autoantibodies against beta 2-adrenergic receptor had autoantibodies against alpha 1-adrenergic receptor and 76.2% had autoantibodies against AT1 receptors. The percent of the autoantibodies against three receptors in patients with hypertensive heart diseases were 52.4%.
CONCLUSIONSAutoantibodies against beta 2- and alpha 1-adrenergic and AT1 receptors play an important role in the pathophysiological changes of primary hypertension, and may participate myocardial and vessel remodeling.
Adult ; Aged ; Autoantibodies ; blood ; Female ; Humans ; Hypertension ; immunology ; Male ; Middle Aged ; Receptor, Angiotensin, Type 1 ; immunology ; Receptors, Adrenergic, alpha-1 ; immunology ; Receptors, Adrenergic, beta-2 ; immunology
2.Responses of the Detrusor Muscle Strips of the Amyda Japonica and the Rabbit to some Autonomic Drugs.
Korean Journal of Urology 1976;17(2):97-102
Recent reports suggest that the responses of the detrusor muscle to the hypogastric nerve stimulation and some autonomic drugs may not be identical among various species. In this study, the responses of the isolated detrusor muscle strips of the Amyda Japonica and the rabbit to catecholamines were compared, and the type of the adrenergic-receptors was investigated. The results obtained were as follows : 1. Catecholamines (norepinephrine and epinephrine) evoked only contraction in the isolated detrusor muscle of the Amyda Japonica and relaxation in the preparation of the rabbit. 2. The contraction-response in the Amyda Japonica was blocked in the presence of regitine, an adrenergic alpha-receptor blocking agent. 3. The relaxation-response in the rabbit was abolished by pre-treatment with propranolol, an adrenergic beta-receptor blocking agent. 4. Acetylcholine elicited contraction in both of the isolated detrusor muscle strips of the Amyda japonica and the rabbit, and the response was completely blocked in the presence of atropine. 5. The results described above suggest that catecholamines exert excitatory effect on the detrusor muscle of the Amyda japonica as it contains adrenergic alpha-receptors and inhibitory effect on the same preparation of the rabbit as it contains the adrenergic beta-receptors. Key Word : amyda japonica,alpha receptor, beta receptor.
Acetylcholine
;
Atropine
;
Autonomic Agents*
;
Catecholamines
;
Phentolamine
;
Propranolol
;
Receptors, Adrenergic, alpha
;
Receptors, Adrenergic, beta
;
Relaxation
3.Recent Advances in Regulating Energy Homeostasis and Obesity.
Korean Journal of Pediatrics 2005;48(2):126-137
New insights in the complex metabolic pathways and its control mechanism for energy homeostasis have refined our understanding of the pathophysiology of obesity. It is now recognized that there are several additional regulatory mechanism such as peripheral signals including leptin, ghrelin, GLP-1 and PYY and cellular signals including uncoupling proteins and beta Adrenergic receptors, which contribute to the regulation of food intake and energy expenditure, respectively. In addition, the function of adipocyte as an endocrine organ in energy homeostasis has been recently emphasized. Recent findings suggest that elevated levels of adipokines, such as leptin, adiponectin, resistin and TNF-alpha, in addition to increased free fatty acid level could be related to the pathophysiology of insulin resistance in obesity. For effective treatments and prevention of obesity, further studies on the circuits of neural and endocrine interactions in the regulation of energy homeostasis are needed.
Adipocytes
;
Adipokines
;
Adiponectin
;
Eating
;
Energy Metabolism
;
Ghrelin
;
Glucagon-Like Peptide 1
;
Homeostasis*
;
Insulin Resistance
;
Leptin
;
Metabolic Networks and Pathways
;
Obesity*
;
Receptors, Adrenergic, beta
;
Resistin
;
Tumor Necrosis Factor-alpha
4.The Role of beta-Adrenergic Receptor in the Seminal Vesicle Contraction.
Jae Ho AHN ; Soon Chul MYUNG ; Sae Chul KIM
Korean Journal of Urology 2003;44(9):924-928
PURPOSE: To investigate the role of beta-adrenergic receptors, and the relevance of NO-mediated & calcium channel-mediated signal transduction in seminal vesicle contractions. MATERIALS AND METHODS: Rabbit seminal vesicle strip preparations were applied to an organ bath system under standard condition. Smooth muscle contractions were induced by alpha and/or beta-adrenergic agonists (norepinephrine, phenylephrine, isoproterenol), and blocked by alpha (prazosin) and/or beta (propranolol)-blocker, an NO donor (sodium nitroprusside) and calcium channel blocker (verapamil). The contractility of the smooth muscle was measured by EC50. RESULTS: Norepinephrine, phenylephrine and isoproterenol produced a sudden increase in the contractions of the smooth muscle. The order of the adrenergic agonists in relation to increases in the contractility was norepinephrine>phenylephrine>isoproterenol. The contractions induced by norepinephrine and phenylephrine were partially blocked by prazosin, and those by isoproterenol were completely blocked by propranolol. The contraction induced by norepinephrine was partially blocked by sodium nitroprusside and verapamil, in dose dependant manners. CONCLUSIONS: Seminal vesicle contractions are mediated mostly by alpha-adrenergic receptors, and seem to be partly mediated by beta-adrenergic receptors. The contractility of seminal vesicle seems to be partly regulated by the NO-cGMP-cascade and calcium channel mediated signal transduction.
Adrenergic Agonists
;
Adrenergic beta-Agonists
;
Baths
;
Calcium
;
Calcium Channels
;
Humans
;
Isoproterenol
;
Muscle, Smooth
;
Nitroprusside
;
Norepinephrine
;
Phenylephrine
;
Prazosin
;
Propranolol
;
Receptors, Adrenergic
;
Receptors, Adrenergic, alpha
;
Receptors, Adrenergic, beta
;
Seminal Vesicles*
;
Signal Transduction
;
Tissue Donors
;
Verapamil
5.In vitro expression and analysis of the 826 human G protein-coupled receptors.
Xuechen LV ; Junlin LIU ; Qiaoyun SHI ; Qiwen TAN ; Dong WU ; John J SKINNER ; Angela L WALKER ; Lixia ZHAO ; Xiangxiang GU ; Na CHEN ; Lu XUE ; Pei SI ; Lu ZHANG ; Zeshi WANG ; Vsevolod KATRITCH ; Zhi-Jie LIU ; Raymond C STEVENS
Protein & Cell 2016;7(5):325-337
G protein-coupled receptors (GPCRs) are involved in all human physiological systems where they are responsible for transducing extracellular signals into cells. GPCRs signal in response to a diverse array of stimuli including light, hormones, and lipids, where these signals affect downstream cascades to impact both health and disease states. Yet, despite their importance as therapeutic targets, detailed molecular structures of only 30 GPCRs have been determined to date. A key challenge to their structure determination is adequate protein expression. Here we report the quantification of protein expression in an insect cell expression system for all 826 human GPCRs using two different fusion constructs. Expression characteristics are analyzed in aggregate and among each of the five distinct subfamilies. These data can be used to identify trends related to GPCR expression between different fusion constructs and between different GPCR families, and to prioritize lead candidates for future structure determination feasibility.
Animals
;
Computational Biology
;
Crystallography, X-Ray
;
Gene Expression
;
Humans
;
Plasmids
;
genetics
;
metabolism
;
Protein Domains
;
Receptors, Adrenergic, beta-1
;
Receptors, G-Protein-Coupled
;
classification
;
genetics
;
metabolism
;
Receptors, Odorant
;
metabolism
;
Receptors, Purinergic P1
;
genetics
;
metabolism
;
Sf9 Cells
;
Spodoptera
6.Study on the interactions between Ligusticum chuanxiong extract and cardiac muscle membrane receptors by CMSP chromatography.
Xuan-feng YUE ; Yan-ni ZHANG ; Zhi-qi ZHANG ; Zhen-jun TIAN ; Jian-xiong YANG ; Fa-rong LI
China Journal of Chinese Materia Medica 2005;30(2):129-133
OBJECTIVETo study the interactions between Ligusticum chuanxiong Hort extract and cardiac muscle membrane receptors.
METHODThe cell membrane of rabbit cardiac muscle was fixed on silicon to make cell membrane stationary phase (CMSP), and then the interactions were studied by comparing the retention characteristics of the extracts from different solvents with those of the antagonists or activators corresponding to known receptors in cardiac muscle membrane, and by competition effect on the retention characteristics of extracts when adding the antagonists or activators into the mobile phase.
RESULTWater extract and ethanol extract both had retentions on CMSP; the retention characteristics of water extract could be affected when water extract was in competition with the antagonists for alpha receptor, and could not be affected when with the activator beta1 receptor.
CONCLUSIONIt is possible that some components in water extract may combine with alpha receptor and no component with beta1 receptor, and that some components in ethanol extract may combine with cardiac muscle cell membrane. The process between active components and receptors in vivo can be imitated through the interactions between drugs and CMSP. The method provides references for the resolution of two applications: to screen the active components from Chinese medicine, and to figure out the type of receptors involved.
Adrenergic alpha-Agonists ; metabolism ; Adrenergic alpha-Antagonists ; metabolism ; Adrenergic beta-Agonists ; metabolism ; Adrenergic beta-Antagonists ; metabolism ; Animals ; Cell Membrane ; metabolism ; Chromatography, High Pressure Liquid ; methods ; Drugs, Chinese Herbal ; isolation & purification ; pharmacology ; Female ; Ligusticum ; chemistry ; Male ; Myocytes, Cardiac ; cytology ; metabolism ; Plants, Medicinal ; chemistry ; Protein Binding ; Rabbits ; Receptors, Adrenergic, alpha ; metabolism ; Receptors, Adrenergic, beta ; metabolism
7.Alterations of epinephrine-induced gluconeogenesis in aging.
Kyungtae KIM ; Sung Chun CHO ; Anthony COVA ; Ik Soon JANG ; Sang Chul PARK
Experimental & Molecular Medicine 2009;41(5):334-340
The effects of glucagon and epinephrine on gluconeogenesis in young (4 month) and old (24 month) Fisher 344 rat hepatocytes were compared. In contrast to glucagon, which had a similar effect on gluconeogenesis in both young and old cells, epinephrine caused a smaller increase in gluconeogenesis in old rat hepatocytes than in young hepatocytes. beta2 adrenergic receptor (beta2-AR) expression slightly decreased in aged rat liver, and there were differences between young and old hepatocytes in their patterns of G protein coupled receptor kinases, which are involved in the activation of beta2-AR receptor signal desensitization. The major isoform of the kinase changed from GRK2 to GRK3 and the expression of beta-arrestin, which is recruited by the phosphorylated beta2-AR for internalization and degradation, increased in aged rat liver. GRK3 overexpression also decreased the glucose output from young rat hepatocytes. We conclude that an age-associated reduction in epinephrine-induced gluconeogenesis occurs through the epinephrine receptor desensitizing system.
Adrenergic beta-Agonists/*pharmacology
;
Aging/*drug effects
;
Animals
;
Epinephrine/*pharmacology
;
G-Protein-Coupled Receptor Kinase 2/metabolism
;
G-Protein-Coupled Receptor Kinase 3/metabolism
;
Glucagon/pharmacology
;
*Gluconeogenesis/drug effects
;
Male
;
Models, Biological
;
Phosphorylation
;
Rats
;
Rats, Inbred F344
;
Receptors, Adrenergic, beta-2/agonists/metabolism
8.Alterations of epinephrine-induced gluconeogenesis in aging.
Kyungtae KIM ; Sung Chun CHO ; Anthony COVA ; Ik Soon JANG ; Sang Chul PARK
Experimental & Molecular Medicine 2009;41(5):334-340
The effects of glucagon and epinephrine on gluconeogenesis in young (4 month) and old (24 month) Fisher 344 rat hepatocytes were compared. In contrast to glucagon, which had a similar effect on gluconeogenesis in both young and old cells, epinephrine caused a smaller increase in gluconeogenesis in old rat hepatocytes than in young hepatocytes. beta2 adrenergic receptor (beta2-AR) expression slightly decreased in aged rat liver, and there were differences between young and old hepatocytes in their patterns of G protein coupled receptor kinases, which are involved in the activation of beta2-AR receptor signal desensitization. The major isoform of the kinase changed from GRK2 to GRK3 and the expression of beta-arrestin, which is recruited by the phosphorylated beta2-AR for internalization and degradation, increased in aged rat liver. GRK3 overexpression also decreased the glucose output from young rat hepatocytes. We conclude that an age-associated reduction in epinephrine-induced gluconeogenesis occurs through the epinephrine receptor desensitizing system.
Adrenergic beta-Agonists/*pharmacology
;
Aging/*drug effects
;
Animals
;
Epinephrine/*pharmacology
;
G-Protein-Coupled Receptor Kinase 2/metabolism
;
G-Protein-Coupled Receptor Kinase 3/metabolism
;
Glucagon/pharmacology
;
*Gluconeogenesis/drug effects
;
Male
;
Models, Biological
;
Phosphorylation
;
Rats
;
Rats, Inbred F344
;
Receptors, Adrenergic, beta-2/agonists/metabolism
9.A "bitter" end to asthma revealed.
Protein & Cell 2011;2(6):433-434
Adrenergic beta-2 Receptor Agonists
;
pharmacology
;
Anti-Inflammatory Agents
;
pharmacology
;
Asthma
;
drug therapy
;
physiopathology
;
Chloroquine
;
pharmacology
;
Humans
;
Myocytes, Smooth Muscle
;
cytology
;
drug effects
;
metabolism
;
Quaternary Ammonium Compounds
;
pharmacology
;
Receptors, Adrenergic, beta-2
;
metabolism
;
Receptors, G-Protein-Coupled
;
agonists
;
metabolism
;
Receptors, Interleukin-4
;
antagonists & inhibitors
;
metabolism
;
Respiratory System
;
drug effects
;
metabolism
;
physiopathology
10.Electrophysiological effects of neurotransmitters on pacemaker cells in guinea pig left ventricular outflow tract.
Lan-Ping ZHAO ; Xiao-Yun ZHANG ; Yan-Jing CHEN ; Jian-Dong LI ; San-Ming ZHANG ; Xue-Fang WANG ; Fu-Gui GE
Acta Physiologica Sinica 2005;57(5):593-598
This study was designed to explore the innervation of autonomic nervous system and the distribution of receptors on pacemaker cell membrane in guinea pig left ventricular outflow tract (aortic vestibule). By using conventional intracellular microelectrode technique to record action potentials, autonomic neurotransmitters and antagonists were used to investigate the electrophysiological features and regularities of spontaneous activity of left ventricular outflow tract cells. Electrophysiological parameters examined were: maximal diastolic potential (MDP), amplitude of action potential (APA), maximal rate of depolarization (V(max)), velocity of diastolic depolarization (VDD), rate of pacemaker firing (RPF), 50% and 90% of duration of action potential (APD(50) and APD(90)). The results are listed below: (1) Perfusion with 100 mumol/L isoprenaline (Iso) resulted in a significant increase in V(max) (P <0.05), VDD, RPF, and APA (P <0.01), a notable decrease in MDP (P<0.05), and also a marked shortening in APD(50) (P<0.01). Pretreatment with Iso (100 mumol/L), propranolol (5 mumol/L) significantly decreased RPF and VDD (P<0.01), decreased APA, MDP and V(max) (P<0.01) notably, prolonged APD(50) (P<0.01) and APD(90) (P<0.05) markedly. (2) Application of 100 mumol/L epinephrine (E) resulted in a significant increase in VDD (P<0.05), RPF (P<0.001), V(max) (P<0.05) and APA (P<0.001), and a notable shortening in APD(50) and APD(90) (P<0.05). (3) Perfusion with 100 mumol/L norepinephrine (NE) led to a significant increase in VDD, RPF, APA and V(max) (P<0.05), and a marked shortening in APD(50) (P<0.05). Pretreatment with NE (100 mumol/L), phentolamine (100 mumol/L) significantly decreased RPF and VDD, MDP and APA (P<0.01), decreased V(max) notably (P<0.05), prolonged APD(50) and APD(90) markedly (P<0.01). (4) During perfusion with 10 mmol/L acetylcholine (ACh), VDD and RPF slowed down notably (P<0.05), APA decreased significantly (P<0.001), V(max) slowed down notably (P<0.01), APD50 shortened markedly (P<0.05), Atropine (10 mmol/L) antagonized the effects of ACh (10 mumol/L) on APD(50) (P<0.05). These results suggest that there are probably alpha-adrenergic receptor (alpha-AR), beta-adrenergic receptor (beta-AR) and muscarinic receptor (MR) on pacemaker cell membrane of left ventricular outflow tract in guinea pig. The spontaneous activities of left ventricular outflow tract cells are likely regulated by sympathetic and parasympathetic nerves.
Action Potentials
;
drug effects
;
Animals
;
Aorta, Thoracic
;
cytology
;
physiology
;
Electrophysiological Phenomena
;
Female
;
Guinea Pigs
;
Heart Ventricles
;
cytology
;
Male
;
Microelectrodes
;
Neurotransmitter Agents
;
physiology
;
Receptors, Adrenergic, alpha
;
physiology
;
Receptors, Adrenergic, beta
;
physiology
;
Receptors, Muscarinic
;
physiology
;
Ventricular Function, Left
;
physiology