2.Progress on Hedgehog signaling transduction.
Acta Physiologica Sinica 2014;66(4):415-422
Hedgehog (Hh) signaling pathway plays an important role during embryonic development and pattern formation. Disruption of Hh pathway results in various developmental disorders and increasing cancer incidence. Here we provide a comprehensive review of the pathway members, focusing on how mammalian Hh regulates the Gli family of transcription factors through its downstream members, the so-called "canonical signaling pathway". Hh signaling pathway is highly conserved among species, and primary cilia plays an important role as a "signaling center" during vertebrate signal transduction. Further, in the past few years, numerous studies have shown that Hh signal can also be transduced through Gli-independent ways collectively referred to as "non-canonical signaling pathways", which can be subdivided into two modules: (i) those not requiring Smo and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, we review the rapid progress on canonical and non-canonical Hh pathways.
Animals
;
Cilia
;
physiology
;
Hedgehog Proteins
;
physiology
;
Receptors, G-Protein-Coupled
;
physiology
;
Signal Transduction
;
Transcription Factors
;
physiology
3.Role of G protein-coupled receptor 17 in central nervous system injury.
Zhuang ZHANG ; Erqing WEI ; Yunbi LU
Journal of Zhejiang University. Medical sciences 2013;42(3):355-359
G-protein-coupled receptor 17 (GPR17), an originally orphan receptor, was identified as a new uracil nucleotides/cysteinyl leukotriene receptor. However, whether GPR17 is really classified as a leukotriene receptor is a matter deserving further investigation. GPR17 is involved in many physiological and pathological processes including brain injury, spinal cord injury, and oligodendrocyte differentiation. GPR17 may become a new therapeutic target in these diseases. In this article, the research progress on the pharmacology and pathophysiological roles of GPR17 is reviewed.
Central Nervous System
;
injuries
;
physiopathology
;
Humans
;
Neurogenesis
;
physiology
;
Receptors, G-Protein-Coupled
;
metabolism
;
physiology
4.Next-Generation Tools to Study Autonomic Regulation In Vivo.
Snigdha MUKERJEE ; Eric LAZARTIGUES
Neuroscience Bulletin 2019;35(1):113-123
The recent development of tools to decipher the intricacies of neural networks has improved our understanding of brain function. Optogenetics allows one to assess the direct outcome of activating a genetically-distinct population of neurons. Neurons are tagged with light-sensitive channels followed by photo-activation with an appropriate wavelength of light to functionally activate or silence them, resulting in quantifiable changes in the periphery. Capturing and manipulating activated neuron ensembles, is a recently-designed technique to permanently label activated neurons responsible for a physiological function and manipulate them. On the other hand, neurons can be transfected with genetically-encoded Ca indicators to capture the interplay between them that modulates autonomic end-points or somatic behavior. These techniques work with millisecond temporal precision. In addition, neurons can be manipulated chronically to simulate physiological aberrations by transfecting designer G-protein-coupled receptors exclusively activated by designer drugs. In this review, we elaborate on the fundamental concepts and applications of these techniques in research.
Animals
;
Autonomic Pathways
;
physiology
;
Calcium Signaling
;
physiology
;
Humans
;
Nerve Net
;
physiology
;
Neurons
;
physiology
;
Optogenetics
;
methods
;
Receptors, G-Protein-Coupled
;
physiology
5.Relationship between insulin like hormone 3 and testicular descent and development.
National Journal of Andrology 2006;12(1):68-70
Testicular descent is an essential step in the course of reproductive system development. The mechanisms involved in the regulation of testis descent is not distinct. Gubernaculum has a very close relationship with testis descent. Maldescent of testis can cause abnormalities of genital system such as testicular underwent (cryptorchidism), dysplasia, tumor, infertility and low sexuality. Recently insulin like hormone 3 is a hotspot of concerning affecting gubernacular development and testicular descent. This article briefly reviews the advances in these aspects.
Animals
;
Humans
;
Insulin
;
physiology
;
Male
;
Mice
;
Mice, Knockout
;
Proteins
;
physiology
;
Receptors, G-Protein-Coupled
;
physiology
;
Testis
;
growth & development
6.GPCR/endocytosis/ERK signaling/S2R is involved in the regulation of the internalization, mitochondria-targeting and -activating properties of human salivary histatin 1.
Dandan MA ; Wei SUN ; Cuicui FU ; Kamran NAZMI ; Enno C I VEERMAN ; Richard T JASPERS ; Jan G M BOLSCHER ; Floris J BIKKER ; Gang WU
International Journal of Oral Science 2022;14(1):42-42
Human salivary histatin 1 (Hst1) exhibits a series of cell-activating properties, such as promoting cell spreading, migration, and metabolic activity. We recently have shown that fluorescently labeled Hst1 (F-Hst1) targets and activates mitochondria, presenting an important molecular mechanism. However, its regulating signaling pathways remain to be elucidated. We investigated the influence of specific inhibitors of G protein-coupled receptors (GPCR), endocytosis pathways, extracellular signal-regulated kinases 1/2 (ERK1/2) signaling, p38 signaling, mitochondrial respiration and Na+/K+-ATPase activity on the uptake, mitochondria-targeting and -activating properties of F-Hst1. We performed a siRNA knockdown (KD) to assess the effect of Sigma-2 receptor (S2R) /Transmembrane Protein 97 (TMEM97)-a recently identified target protein of Hst1. We also adopted live cell imaging to monitor the whole intracellular trafficking process of F-Hst1. Our results showed that the inhibition of cellular respiration hindered the internalization of F-Hst1. The inhibitors of GPCR, ERK1/2, phagocytosis, and clathrin-mediated endocytosis (CME) as well as siRNA KD of S2R/TMEM97 significantly reduced the uptake, which was accompanied by the nullification of the promoting effect of F-Hst1 on cell metabolic activity. Only the inhibitor of CME and KD of S2R/TMEM97 significantly compromised the mitochondria-targeting of Hst1. We further showed the intracellular trafficking and targeting process of F-Hst1, in which early endosome plays an important role. Overall, phagocytosis, CME, GPCR, ERK signaling, and S2R/TMEM97 are involved in the internalization of Hst1, while only CME and S2R/TMEM97 are critical for its subcellular targeting. The inhibition of either internalization or mitochondria-targeting of Hst1 could significantly compromise its mitochondria-activating property.
Endocytosis/physiology*
;
Histatins/pharmacology*
;
Humans
;
Membrane Proteins
;
Mitochondria/metabolism*
;
RNA, Small Interfering/pharmacology*
;
Receptors, G-Protein-Coupled/metabolism*
;
Receptors, sigma
7.Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases.
Er-Teng JIA ; Zhi-Yu LIU ; Min PAN ; Jia-Feng LU ; Qin-Yu GE
Journal of Zhejiang University. Science. B 2019;20(10):781-792
Over the past decade, there has been increasing attention on the interaction between microbiota and bile acid metabolism. Bile acids are not only involved in the metabolism of nutrients, but are also important in signal transduction for the regulation of host physiological activities. Microbial-regulated bile acid metabolism has been proven to affect many diseases, but there have not been many studies of disease regulation by microbial receptor signaling pathways. This review considers findings of recent research on the core roles of farnesoid X receptor (FXR), G protein-coupled bile acid receptor (TGR5), and vitamin D receptor (VDR) signaling pathways in microbial-host interactions in health and disease. Studying the relationship between these pathways can help us understand the pathogenesis of human diseases, and lead to new solutions for their treatments.
Bile Acids and Salts/metabolism*
;
Gastrointestinal Microbiome
;
Humans
;
Inflammation/metabolism*
;
Metabolic Syndrome/metabolism*
;
Receptors, Calcitriol/physiology*
;
Receptors, Cytoplasmic and Nuclear/physiology*
;
Receptors, G-Protein-Coupled/physiology*
;
Signal Transduction/physiology*
8.Modulation of non-ion channel proteins by membrane potential.
Xingjuan CHEN ; Xidong ZHANG ; Xuan ZHANG ; Jiaxi XU ; Hailin ZHANG
Journal of Central South University(Medical Sciences) 2013;38(2):216-220
The different concentration of specific ion species and the electrodiffusion of the ions down their electrochemical gradient generate transmembrane potential. The regulation of membrane potential for the function of numerous membrane proteins such as ion channels, transporters, pumps and enzymes plays primary role in the conversion of extracellular electric stimulation into a sequence of intracellular biochemical signals. Some ion channels regulated by membrane potential are well known, and the membrane non-ion channels protein is also modulated physiologically by membrane potential.
Humans
;
Ion Channel Gating
;
physiology
;
Ion Channels
;
metabolism
;
Membrane Potentials
;
physiology
;
Phosphoric Monoester Hydrolases
;
metabolism
;
Receptors, G-Protein-Coupled
;
metabolism
9.Roles of G protein-coupled estrogen receptor in the male reproductive system.
Kai-hong CHEN ; Xian ZHANG ; Xue-wu JIANG
National Journal of Andrology 2016;22(2):175-179
The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.
Estrogens
;
metabolism
;
Genitalia, Male
;
metabolism
;
Humans
;
Male
;
Molecular Structure
;
Organ Specificity
;
Receptors, Estrogen
;
chemistry
;
physiology
;
Receptors, G-Protein-Coupled
;
chemistry
;
physiology
;
Reproduction
;
physiology
;
Signal Transduction
10.Roles of phosphatidylethanolamine-binding protein in cell signaling and its biological functions.
Jia-Ming BIAN ; Ning WU ; Jin LI
Acta Physiologica Sinica 2013;65(2):237-243
Phosphatidylethanolamine-binding protein (PEBP) is a cytoplasm soluble protein with a high conserved structure. It has been approved recently that PEBP is a multifunctional molecule regulating several important cellular signal pathways, including ERK cascade, NF-κB pathway, and signaling of G protein-coupled receptors. Furthermore, the role of PEBP in tumor metastasis also got a comprehensive attention in the field of clinical cancer research. Together, as a signal regulator at multiple paths in cell, PEBP is becoming a new focus in several research fields. This review is aimed to introduce the newest biological progress on PEBP.
Humans
;
MAP Kinase Signaling System
;
NF-kappa B
;
physiology
;
Neoplasms
;
Phosphatidylethanolamine Binding Protein
;
physiology
;
Receptors, G-Protein-Coupled
;
physiology
;
Signal Transduction