1.Aberrant plasticity and "learned" motor inhibition in Parkinson's disease.
Acta Physiologica Sinica 2012;64(5):543-549
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by severe loss of substantia nigra dopamine (DA) neurons. The target region of substantia nigra DA neurons is the dorsal striatum. According to the classic model, activation of DA receptors on striatal medium spiny neurons (MSNs) modulates their intrinsic excitability. Activation of D1 receptors makes MSNs in the direct "Go" pathway more excitable, whereas activation of D2 receptors makes MSNs in the indirect "NoGo" pathway less excitable. Therefore increased DA increases the responsiveness of the Go pathway while decreases the responsiveness of the NoGo pathway. Both mechanisms increase motor output. Conversely, diminished DA will favor the inhibitory NoGo pathway. Therefore, DA has direct, "on-line" effect on motor performance. However, in addition to modulating the intrinsic excitability of MSNs "on-line", DA also modulates corticostriatal plasticity, therefore could potentially produce cumulative and long-lasting changes in corticostriatal throughput. Studies in my lab suggest that DA blockade leads to both direct motor performance impairment and D2 receptor dependent NoGo learning ("learned" motor inhibition) that gradually deteriorates motor performance. NoGo learning is experience dependent and task specific. It is different from blocked learning since NoGo learning impairs future performance even after DA is restored. More recent data from my lab suggest that NoGo learning in the absence of DA arises from increased LTP at the indirect pathway corticostriatal synapses and contributes significantly to PD-like motor symptoms. Our data and hypotheses suggest a novel therapeutic strategy for PD that targets directly signaling molecules for corticostriatal plasticity (e.g. the cAMP pathway and downstream signaling molecules) and prevents aberrant plasticity under conditions of DA denervation.
Corpus Striatum
;
cytology
;
Dopamine
;
physiology
;
Dopaminergic Neurons
;
pathology
;
Humans
;
Neuronal Plasticity
;
Parkinson Disease
;
physiopathology
;
Receptors, Dopamine D1
;
physiology
;
Receptors, Dopamine D2
;
physiology
;
Substantia Nigra
;
pathology
2.Distribution of D1 and D2-dopamine receptors in calcium-binding-protein expressing interneurons in rat anterior cingulate cortex.
Acta Physiologica Sinica 2015;67(2):163-172
Dopamine plays an important role in cognitive functions including decision making, attention, learning and memory in the anterior cingulate cortex (ACC). However, little is known about dopamine receptors (DAR) expression patterns in ACC neurons, especially GABAergic interneurons. The aim of the present study was to investigate the expression of the most abundant DAR subtypes, D1 receptors (D1Rs) and D2 receptors (D2Rs), in major types of GABAergic interneurons in rat ACC, including parvalbumin (PV)-, calretinin (CR)-, and calbindin D-28k (CB)-containing interneurons. Double immunofluorescence staining and confocal scanning were used to detect protein expression in rat brain sections. The results showed a high proportion of PV-containing interneurons express D1Rs and D2Rs, while a low proportion of CR-positive interneurons express D1Rs and D2Rs. D1R- and D2R-expressing PV interneurons are more prevalently distributed in deep layers than superficial layers of ACC. Moreover, we found the proportion of D2Rs expressed in CR cells is much greater than that of D1Rs. These regional and interneuron type-specific differences of D1Rs and D2Rs indicate functionally distinct roles for dopamine in modulating ACC activities via stimulating D1Rs and D2Rs.
Animals
;
Calbindin 1
;
physiology
;
Calbindin 2
;
physiology
;
Calcium-Binding Proteins
;
physiology
;
Dopamine
;
physiology
;
Gyrus Cinguli
;
cytology
;
Interneurons
;
physiology
;
Parvalbumins
;
physiology
;
Rats
;
Receptors, Dopamine D1
;
physiology
;
Receptors, Dopamine D2
;
physiology
3.Dopamine D2 receptor may be involved in the regulation of cortical-striatum synaptic transmission and autonomic activity in PD mice by exercise.
Gang ZHAO ; Dan-Yu ZHANG ; Xiao-Li LIU ; De-Cai QIAO
Acta Physiologica Sinica 2019;71(4):547-554
The aim of the present study was to reveal the role of cortical-striatum postsynaptic dopamine D2 receptor (D2R) in improving motor behavioral dysfunction in Parkinson's disease (PD) mice by exercise. C57/BL6 male adult mice were randomly divided into control, PD and PD plus exercise groups. The mice were injected with 6-OHDA in striatum to establish a unilateral injury PD model. The exercise intervention program was uniform speed running (16 m/min, 40 min/d, 5 d per week for 4 weeks). Autonomic activity of mice was tested by open field test. Cortical-striatum synaptic transmission efficiency was assessed by peak amplitude of field excitatory postsynaptic potential (fEPSP) recorded from in vitro brain slides. Meanwhile, the effects of D2R agonist on autonomic activity and cortical-striatal synaptic transmission were observed. The results showed that, compared with PD group, PD plus exercise group exhibited significantly increased autonomic motor distance and proportion of fast-moving (P < 0.05), as well as decreased maximum amplitude of fEPSP under increasing stimulation intensity (0.75-3.00 pA) (P < 0.05) and slope of stimulus-response curve. Compared with PD mice without D2R agonist, the movement distance and rapid movement ratio of PD mice treated with D2R agonist were increased significantly (P < 0.05), whereas fEPSP peak amplitude (P < 0.05) and the slope of stimulus-response curve were decreased. These results indicate that either early exercise intervention or D2R agonist treatment can inhibit the abnormal increase of cortical-striatum synaptic transmission and improve the autonomic motor ability in PD mice, suggesting that the cortical-striatum synaptic D2R may be an important molecular target for exercise to improve the autonomic motor ability of PD mice.
Animals
;
Corpus Striatum
;
physiology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Oxidopamine
;
Parkinson Disease
;
physiopathology
;
therapy
;
Physical Conditioning, Animal
;
Random Allocation
;
Receptors, Dopamine D2
;
agonists
;
physiology
;
Synaptic Transmission
4.Increased Burst Firing in Substantia Nigra Pars Reticulata Neurons and Enhanced Response to Selective D2 Agonist in Hemiparkinsonian Rats After Repeated Administration of Apomorphine.
Jung Il LEE ; Hee Jung SHIN ; Do Hyun NAM ; Jong Soo KIM ; Seung Chyul HONG ; Hyung Jin SHIN ; Kwan PARK ; Whan EOH ; Jong Hyun KIM ; Won Yong LEE
Journal of Korean Medical Science 2001;16(5):636-642
Intermittent administrations of dopaminergic agents in hemiparkinsonian rat enhances the behavioral response to subsequent administration of the drugs. This phenomenon is known as "priming" and thought as comparable to drug-induced dyskinesia in patients with Parkinson's disease. We investigated the behavioral and electrophysiological changes in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats after repeated administrations of apomorphine. Administration of apomorphine (0.32 mg/kg, intraperitoneal, i.p.) twice daily for 6 days enhanced the rotation induced by apomorphine from 341 turns/hour at the beginning to 755 turns/hr at the end. At the same time, the response to selective D2 agonist quinpirole (0.26 mg/kg, i.p.) was also enhanced from 203 to 555 turns/hr. Extracellular single unit recording revealed no significant difference in the basal firing rates of substantia nigra pars reticulata (SNr) neurons between the ipsilateral and contralateral side of the 6-OHDA lesion regardless of the repeated administrations of apomorphine. In SNr of the lesion side, the units with burst firing pattern were found more frequently after repeated administrations of apomorphine and the suppressive effect of quinpirole on the firing rate was enhanced. These findings suggest that the increased percentage of the burst units is the important electrophysiological change in the development of enhanced response to selective D2 agonist.
Animal
;
Apomorphine/*pharmacology
;
Dopamine Agonists/*pharmacology
;
MPTP Poisoning/physiopathology
;
Male
;
Oxidopamine/toxicity
;
Parkinsonian Disorders/*physiopathology
;
Quinpirole/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Dopamine D2/*drug effects
;
Substantia Nigra/*drug effects/physiology
5.Mechanism of decrease in heart rate by peripheral dopaminergic D2-receptors.
Jung Han YOON ; Chang Mann KO ; Young Soo AHN ; Keum Soo PARK ; Kyung Hoon CHOE ; Kyung Ja YOO ; Kyung Hwan KIM ; Sung Soon KIM ; Bum Koo CHO
Yonsei Medical Journal 1994;35(4):411-419
We performed this study in order to verify the heart rate decrease caused by the D2-receptor on cardiac sympathetic nerve endings and its relation to the concentration of norepinephrine in synaptic clefts. Sprague-Dawley rats were pithed and the heart rate was increased either by electrical stimulation of the cardiac accelerator nerve or by intravenous infusion of norepinephrine, tyramine, or isoproterenol. Increased heart rate by electrical stimulation of cardiac accelerator nerve was dose-dependently lowered by lisuride and its effect was blocked by pretreatment with sulpiride but not with yohimbine and SCH 23390. Also, the heart rate was decreased in a dose-dependent manner by clonidine and this effect was blocked by pretreatment with yohimbine, but not with sulpiride. For increased heart rate by infusion of norepinephrine, tyramine, or isoproterenol, the heart rate lowering effect of lisuride was more marked in the norepinephrine-and tyramine-infusion groups, in which the intrasynaptic concentration of norepinephrine was elevated, compared to the isoproterenol-infusion group, in which intrasynaptic concentration of norepinephrine was not elevated. In conclusion, there is a D2-receptor on the cardiac sympathetic nerve endings which decreases the heart rate and is different from the presynaptic alpha 2-receptor. Also, the heart rate lowering effect via stimulation of the D2-receptor by lisuride was more marked with increased concentration of norepinephrine in the synaptic cleft.
Animal
;
Female
;
Heart/innervation
;
Heart Rate/drug effects/*physiology
;
Lisuride/pharmacology
;
Male
;
Norepinephrine/metabolism
;
Rats
;
Receptors, Dopamine D2/*physiology
;
Support, Non-U.S. Gov't
;
Sympathetic Nervous System/metabolism
;
Synapses/metabolism
;
Yohimbine/pharmacology
6.The effects of DR2 on myocardial ischemic postconditioning and its underlying mechanisms.
Hong-Zhu LI ; Jun GAO ; Xiao-Min HAO ; Li-Min ZHANG ; Jun-Ting CHEN
Chinese Journal of Applied Physiology 2014;30(4):301-305
OBJECTIVETo study the effects of dopamin receptors-2 (DR2) on myocardial ischemic postconditioning and explore its underlying mechanisms.
METHODSThe myocardial ischemic postconditioning (PC) model was established in cultured primary rat neonatal cardiomyocytes which were then randomly assigned in the following groups: Nomial control group, Isehemia/reperfusion (L'R) group, PC (ischemic postconditioning) group, PC + Bro (Bromocriptine, a DB2 antagonist) group, PC + Hal (Haloperidol, a DB2 repressor) and PC + Hal + Bro groups. The lactate dehydrogenase (LDH) and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in cell medium were analyzed by colorunetry. The cell ultrastructure changes were observed by transmission electron microscope. The cell apoptosis was analyzed using flowcytometiy. The protein expression level of D112 and activity of p-p38 and p-JNK were detected by Western blot.
RESULTSCompared with the nonnal control group, hR increased the protein expression level of DB2, enhanced LDH activity and MDA content, promoted cell injury and apoptosis, decreased SOD activity, up-regulated the activity of p-p38 and p-JNK. Compared with the hR group, although PC further increased the expression of DR2 protein, it decreased LDH activity and MDA content, cell injury and apoptosis, increased SOD activity, down-regulated activity of p-p38 and p-JNK. Bromocriptine treatment further enhanced PC-induced canlioprotective effect, yet Hal addition attenuated this enhancing effect exerted by bromocriptine.
CONCLUSIONThe activation of DB2 is involved in the protective effect of ischemic postconditioning on myocardial ischemia/reperfusion injury through down-regulating the activity of p-p38 and p-JNK.
Animals ; Apoptosis ; Cells, Cultured ; Ischemic Postconditioning ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Myocardial Reperfusion Injury ; prevention & control ; Myocytes, Cardiac ; pathology ; Rats ; Rats, Wistar ; Receptors, Dopamine D2 ; physiology ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.Effects of D1 and D2 dopamine receptor agonists and antagonists on cerebral ischemia/reperfusion injury.
Xue-Mei ZONG ; Yin-Ming ZENG ; Tie XU ; Jian-Nong LÜ
Acta Physiologica Sinica 2003;55(5):565-570
Gerbil forebrain ischemia/reperfusion(I/R) injury model was used to study the effects of D(1) and D(2) receptor agonists and antagonists on neuronal apoptosis of hippocampal CA1 area. All animals were tested for habituation deficits in an open field test on the 1st, 3rd and 7th days after reperfusion. The animals were then killed, and brains underwent paraffin embedding for hematoxylin-eosin staining, in situ terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling (TUNEL) staining and immunohistochemistry (bax, bcl-2). The result of open field test showed that the I/R group was significantly impaired (higher activity scores) when compared with the control group. Pretreatment with pergolide significantly reduced this habituation impairment. Forebrain ischemia for 5 min resulted in extensive CA1 apoptosis on the 3rd and 7th days after I/R injury. About 95% neurons in hippocampal CA1 area entered apoptosis and only 2%-7% pyramidal neurons stayed alive due to an inhibition of bcl-2 expression and an increase in bax expression. Pretreatment of pergolide attenuated neuronal damage caused by transient ischemia. Infusion of pergolide could induce the expression of bcl-2 and reduce the expression of bax. Pretreatment with SKF38393, SCH23390 and spiperone had no effects on these changes in this transient I/R injury model. All these results indicate that pergolide plays an important role in the protection of hippocampal neurons from apotosis through upregulating the expression of bcl-2 protein and reducing the expression of bax protein.
2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine
;
pharmacology
;
Animals
;
Apoptosis
;
Brain
;
physiopathology
;
Brain Ischemia
;
physiopathology
;
Dopamine Agonists
;
pharmacology
;
Dopamine Antagonists
;
pharmacology
;
Gerbillinae
;
Hippocampus
;
physiopathology
;
Ischemic Attack, Transient
;
physiopathology
;
Male
;
Neurons
;
physiology
;
Neuroprotective Agents
;
pharmacology
;
Pergolide
;
pharmacology
;
Prosencephalon
;
physiopathology
;
Proto-Oncogene Proteins
;
biosynthesis
;
genetics
;
Proto-Oncogene Proteins c-bcl-2
;
biosynthesis
;
genetics
;
Receptors, Dopamine D1
;
Receptors, Dopamine D2
;
Reperfusion Injury
;
physiopathology
;
bcl-2-Associated X Protein