1.Dopaminergic Neurons in the Ventral Tegmental-Prelimbic Pathway Promote the Emergence of Rats from Sevoflurane Anesthesia.
Yanping SONG ; Ruitong CHU ; Fuyang CAO ; Yanfeng WANG ; Yanhong LIU ; Jiangbei CAO ; Yongxin GUO ; Weidong MI ; Li TONG
Neuroscience Bulletin 2022;38(4):417-428
Dopaminergic neurons in the ventral tegmental area (VTA) play an important role in cognition, emergence from anesthesia, reward, and aversion, and their projection to the cortex is a crucial part of the "bottom-up" ascending activating system. The prelimbic cortex (PrL) is one of the important projection regions of the VTA. However, the roles of dopaminergic neurons in the VTA and the VTADA-PrL pathway under sevoflurane anesthesia in rats remain unclear. In this study, we found that intraperitoneal injection and local microinjection of a dopamine D1 receptor agonist (Chloro-APB) into the PrL had an emergence-promoting effect on sevoflurane anesthesia in rats, while injection of a dopamine D1 receptor antagonist (SCH23390) deepened anesthesia. The results of chemogenetics combined with microinjection and optogenetics showed that activating the VTADA-PrL pathway prolonged the induction time and shortened the emergence time of anesthesia. These results demonstrate that the dopaminergic system in the VTA has an emergence-promoting effect and that the bottom-up VTADA-PrL pathway facilitates emergence from sevoflurane anesthesia.
Anesthesia
;
Animals
;
Dopaminergic Neurons/metabolism*
;
Rats
;
Receptors, Dopamine D1/metabolism*
;
Sevoflurane/pharmacology*
;
Ventral Tegmental Area/metabolism*
2.Direct modulation of firing activity by dopamine Dlike receptors in the globus pallidus of both normal and parkinsonian rats.
Yong-Cun ZHU ; Yan XUE ; Hui-Ling DIAO ; Hua CHEN ; Hong-Yun LIU ; Xiao-Hua HAN ; Lei CHEN
Acta Physiologica Sinica 2016;68(5):699-707
The globus pallidus occupies a critical position in the indirect pathway of the basal ganglia circuit, which regulates movement under both normal and pathological conditions. Previous studies have shown that the globus pallidus receives dopaminergic innervation from the axonal collaterals of nigrostriatal fibers. Both dopamine Dand Dlike receptors are expressed in the globus pallidus. The present study was aimed to investigate the direct in vivo electrophysiological effects of dopamine Dlike receptors in the globus pallidus of both normal and parkinsonian rats. Extracellular recordings of multi-barreled microelectrode were used in the present study. In normal rats, micro-pressure ejection of dopamine Dlike receptor agonist quinpirole induced different effects on the firing rate of globus pallidus neurons. In 24 out of the 61 pallidal neurons, quinpirole significantly increased the firing rate by (62.7 ± 11.2)%. In another 16 neurons, quinpirole decreased the spontaneous firing rate by (37.5 ± 2.9)%. Furthermore, co-application of dopamine Dlike receptor antagonist, sulpride, blocked quinpirole-induced modulation of the firing rate of pallidal neurons. On the 6-hydroxydopamine (6-OHDA) lesioned side of parkinsonian rats, quinpirole increased the firing rate in 25 out of the 47 pallidal neurons by (64.2 ± 10.1)%, while decreased the firing rate in 11 neurons by (51.9 ± 6.2)%. Our findings suggest that activation of pallidal dopamine Dlike receptors may bidirectionally modulate the spontaneous firing of globus pallidus neurons in both normal and parkinsonian rats.
Animals
;
Disease Models, Animal
;
Dopamine
;
Globus Pallidus
;
metabolism
;
Male
;
Neurons
;
Oxidopamine
;
Parkinsonian Disorders
;
metabolism
;
Rats
;
Receptors, Dopamine D1
;
metabolism
;
Receptors, Dopamine D2
;
metabolism
3.Mechanism of apoptosis-inducing effects of dopamine on K562 leukemia cells.
Lin-Bo YUAN ; Qun HE ; Yi-Min GUO
Journal of Zhejiang University. Medical sciences 2007;36(2):191-195
OBJECTIVETo investigate the mechanism of the apoptosis-inducing effects of dopamine on K562 leukemia cells.
METHODSK562 cells were treated with DP2785, the dopamine receptors were detected with fluorescence spectrophotometer, UV spectrophotometer and fluorescence microscope; the contents of cAMP in K562 cells were measured; and the subtypes of dopamine receptor on K562 cells were analyzed by receptor blocking.
RESULTThe existence of dopamine receptors in K562 cells was demonstrated by fluorescence microscopy, UV spectrophotometer and fluorescence spectrophotometer. Dopamine enhanced the contents of cAMP in K562 cells. Dopamine receptors were blocked by both D1 and D2 antagonists.
CONCLUSIOND1 and D2 dopamine receptors may be involved in dopamine-induced apoptosis of K562 cells, and dopamine can also increase the contents of cAMP in K562 cells.
Apoptosis ; drug effects ; Cyclic AMP ; metabolism ; Dopamine ; pharmacology ; Humans ; K562 Cells ; Microscopy, Fluorescence ; Receptors, Dopamine D1 ; metabolism ; Receptors, Dopamine D2 ; metabolism ; Spectrometry, Fluorescence ; Spectrophotometry, Ultraviolet
4.Activation of Dopamine D2 Receptors Alleviates Neuronal Hyperexcitability in the Lateral Entorhinal Cortex via Inhibition of HCN Current in a Rat Model of Chronic Inflammatory Pain.
Shi-Hao GAO ; Yong TAO ; Yang ZHU ; Hao HUANG ; Lin-Lin SHEN ; Chang-Yue GAO
Neuroscience Bulletin 2022;38(9):1041-1056
Functional changes in synaptic transmission from the lateral entorhinal cortex to the dentate gyrus (LEC-DG) are considered responsible for the chronification of pain. However, the underlying alterations in fan cells, which are the predominant neurons in the LEC that project to the DG, remain elusive. Here, we investigated possible mechanisms using a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain. We found a substantial increase in hyperpolarization-activated/cyclic nucleotide-gated currents (Ih), which led to the hyperexcitability of LEC fan cells of CFA slices. This phenomenon was attenuated in CFA slices by activating dopamine D2, but not D1, receptors. Chemogenetic activation of the ventral tegmental area -LEC projection had a D2 receptor-dependent analgesic effect. Intra-LEC microinjection of a D2 receptor agonist also suppressed CFA-induced behavioral hypersensitivity, and this effect was attenuated by pre-activation of the Ih. Our findings suggest that down-regulating the excitability of LEC fan cells through activation of the dopamine D2 receptor may be a strategy for treating chronic inflammatory pain.
Animals
;
Chronic Pain
;
Entorhinal Cortex/metabolism*
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
;
Neurons/metabolism*
;
Rats
;
Receptors, Dopamine D1/metabolism*
;
Receptors, Dopamine D2
5.Effects and mechanisms of low concentration dopamine on hydrogen peroxide-induced apoptosis in cultured neonatal rat cardiomyocytes.
Xiao-na CAI ; Sa SHI ; Hong-zhu LI ; Wang LI-NA ; Hong LI
Chinese Journal of Applied Physiology 2015;31(1):67-71
OBJECTIVETo study the effects of low concentration dopamine(DA) on hydrogen peroxide-induced apoptosis in cultured rat cardiomyocytes as well as the possible molecular mechanisms.
METHODSCultured neonatal rat cardiomyocytes were randomly divided into the following groups: control group (control), hydrogen peroxide group (H2O2), pretreated with low concentration dopamine ( DA + H2O2), dopamine receptor l(DR1) antagonist group (DR1 + DA + H2O2), dopamine receptor 2(DR2) antagonist group (DR2 + DA + H2O2). The cell apoptosis was then assessed by MTT and flow cytometry. The cellular ultrastructure changes were observed by transmission electron micro- scope. The activity of lactate dehydrogenase(LDH )and superoxide dismutase (SOD) in cell medium was analyzed by colorimetry. The protein expressions of Cytochrone c, Caspase 3 and Caspase 9 were obtained by Western blot.
RESULTSCompared with hydrogen peroxide group, low concentration dopamine(10 µmol/L) decreased the apoptosis rate and the expression of protein of apoptosis related protein, enhanced SOD activity, decreased LDH activity. DR1 antagonist SCH-23390 treatment inhibited dopamine induced cardiac protective effect. DR2 antagonist haloperido treatment had no changes compared with dopamine group.
CONCLUSIONAbove findings indicate that low concentration dopanine inhibits apoptosis induced by hydrogen peroxide in neonatal rat cardiomyocytes, which is partly associated with the activation of DR1.
Animals ; Apoptosis ; Benzazepines ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cells, Cultured ; Dopamine ; pharmacology ; Hydrogen Peroxide ; L-Lactate Dehydrogenase ; metabolism ; Myocytes, Cardiac ; drug effects ; Rats ; Rats, Wistar ; Receptors, Dopamine D1 ; metabolism ; Superoxide Dismutase ; metabolism
6.Behavioral-electrophysiological observation of the involvement of dopamine D1 receptor of the rat anterior cingulate cortex in the regulation of pain-related emotion.
Xiang-Xin DU ; Li-Na ZHANG ; Yu-Tong ZHANG ; Na HAO ; Xia GUO ; Xin ZHAO ; Zhi-Hua WANG ; Yu ZHANG
Acta Physiologica Sinica 2022;74(2):155-164
The present study was aimed to explore the involvement of dopamine D1 receptor of the anterior cingulate cortex (ACC) in the regulation of chronic inflammatory pain-related emotion. On the first day, the rats were acclimated to the environment and the baseline indices were measured. On the second day, the rats were administered with the dopamine D1 receptor antagonist SCH-23390 or agonist SKF38393 in the ACC, and then they were subcutaneously injected with complete Freund's adjuvant (CFA, 0.08 mL) in the left hind paw to establish conditioned place avoidance (CPA) response after pairing with specific environment. On the third day, the CPA response and the firing frequency of ACC neurons were observed synchronously, and the open-field behavior, mechanical pain behavior and paw withdrawal latency (PWL) tests were also observed subsequently. In other experiments, rats were given subcutaneous injection of normal saline (NS) on the left hind paw after SCH-23390 or SKF-38393 was administered in the ACC, and then the same observations were performed. The results showed that: (1) Compared with the control group, the PWL and mechanical pain thresholds of rats injected with CFA on the left hind paw were significantly decreased (P < 0.05); (2) The residence time of rats injected with CFA in the "pain environment" and open field center was significantly shortened (P < 0.05); (3) Pre-injection of antagonist SCH-23390 in ACC (10 μg) alleviated the anxiety-like negative behavior response induced by CFA (P < 0.05) and reversed CFA-induced increases of discharge frequency of ACC neurons (P < 0.05); (4) Pre-injection of agonist SKF-38393 in the ACC (10 μg) induced CPA-like behavioral response in rats injected with NS in the left hind paw, and increased the firing frequency of ACC neurons (P < 0.05); (5) Immunofluorescence detection showed that dopamine D1 receptor and NMDA receptor were co-expressed in the same neuron. These results suggest that inhibition of dopamine D1 receptor in ACC can alleviate the negative emotional response induced by persistent pain.
2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/adverse effects*
;
Animals
;
Anxiety
;
Chronic Pain
;
Gyrus Cinguli
;
Hyperalgesia
;
Rats
;
Receptors, Dopamine D1/metabolism*
7.Dopamine receptors oppositely regulate cocaine-induced transcription factor CREB activation.
Nu-yun LIU ; Lin ZHANG ; Xiao-ning WANG ; Lu ZHANG
Journal of Southern Medical University 2006;26(6):715-718
OBJECTIVETo study the role of dopamine receptors in the regulation of the activity of transcription factor cAMP response element-binding protein (CREB) after cocaine treatment.
METHODSBy using dopamine receptor antagonists SCH23390 and nafadotride, the activation of CREB by D1 and D3 dopamine receptors after cocaine treatment and role of extracellular signal-regulated kinase (ERK) in cocaine-induced CREB activation were examined by Western blotting, which was also employed for determination of the effect of SCH23390 and nafadotride on CREB activation.
RESULTSD1 receptor antagonist could inhibit cocaine-induced CREB activation, while D3 receptor antagonist enhanced cocaine-induced CREB activation. Dopamine receptor antagonists SCH23390 and nafadotride did not induce CREB activation. SL327, a MEK inhibitor, inhibited cocaine-induced CREB activation.
CONCLUSIOND1 and D3 dopamine receptors can oppositely regulate CREB activation after cocaine treatment and this regulation depends on ERK signaling pathway.
Animals ; Benzazepines ; pharmacology ; Blotting, Western ; Cocaine ; pharmacology ; Cyclic AMP Response Element-Binding Protein ; metabolism ; Dopamine Antagonists ; pharmacology ; Dopamine Uptake Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Mice ; Naphthalenes ; pharmacology ; Pyrrolidines ; pharmacology ; Receptors, Dopamine D1 ; antagonists & inhibitors ; physiology ; Receptors, Dopamine D3 ; antagonists & inhibitors ; physiology ; Signal Transduction ; drug effects
8.Differential distributions and trafficking properties of dopamine D1 and D5 receptors in nerve cells.
You HE ; Lei-Ping YU ; Guo-Zhang JIN
Neuroscience Bulletin 2009;25(2):43-53
OBJECTIVETo explore the possible differential trafficking properties of the dopamine D1-like receptor subtypes, D1 receptor and D5 receptor.
METHODSTo visualize distributions of dopamine D1-like receptor subtypes at subcellular level, the yellow and cyan variants of green fluorescent protein (GFP) were used to tag D1 and D5 receptors. After transfection with the tagged dopamine receptors, the neuroblastoma cells NG108-15 were treated with D1 agonist SKF38393 or acetylcholine (ACh). Then we observed the subcellular distributions of the tagged receptors under the confocal microscopy and tried to determine trafficking properties by comparing their distribution patterns before and after the drug treatment.
RESULTSIn resting conditions, D1 receptors located in the plasma membrane of NG108-15 cells, while D5 receptors located in both plasma membrane and cytosol. With the pre-treatment of SKF38393, the subcellular distribution of D1 receptors was changed. The yellow particle-like fluorescence of tagged D1 receptors appeared in the cytosol, indicating that D1 receptors were internalized into cytosol from the cell surface. Same situation also occurred in ACh pre-treatment. In contrast, the subcellular distribution of D5 receptors was not changed after SKF38393 or ACh treatment, indicating that D5R was not translocated to cell surface. Interestingly, when D1 and D5 receptors were co-expressed in the same cell, both kept their distinct subcellular distribution patterns and the trafficking properties.
CONCLUSIONOur present study reveals that in NG108-15 nerve cells, dopamine D1 and D5 receptors exhibit differential subcellular distribution patterns, and only D1 receptor has a marked trafficking response to the drug stimulation. We further discuss the potential role of the differential trafficking properties of D1-like receptors in complex modulation of DA signaling.
2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine ; pharmacology ; Acetylcholine ; pharmacology ; Animals ; Cell Line ; Dopamine Agonists ; pharmacology ; HeLa Cells ; Humans ; Luminescent Proteins ; genetics ; Mice ; Microscopy, Confocal ; methods ; Neuroblastoma ; Protein Transport ; drug effects ; Rats ; Receptors, Dopamine D1 ; metabolism ; Receptors, Dopamine D5 ; metabolism ; Subcellular Fractions ; metabolism ; ultrastructure ; Transfection ; methods
9.G protein kinase 4gammaA142V overexpression induced hypertension by downregulating D1 receptors in transgenic mice.
Chun-yu ZENG ; Zheng WANG ; Zhi-wei YANG ; Duo-fen HE ; Cheng-ming YANG ; Laureano D ASICO ; Robin A FELDER ; Pedro A JOSE
Chinese Journal of Cardiology 2006;34(5):411-414
OBJECTIVEAbnormalities in dopamine production and receptor function have been described in human essential hypertension and rodent models of genetic hypertension. We investigated the role of G protein kinase (GRK) 4gamma in essential hypertension in GRK4gamma mutant A142V transgenic mice.
METHODSBlood pressure, renal sodium excretion, D(1) receptor protein expression and phosphorylation were measured in GRK4gammaA142V transgenic mice and control mice. Moreover, the effects of GRK4 inhibition by antisense oligonucleotides on D(1) receptor expressions were determined in HK-2 cells.
RESULTSAs compared with their control mice, GRK4gammaA142V transgenic mice had higher blood pressure, lower D(1) receptor expression (0.6 +/- 0.2 vs. 1.5 +/- 0.2, P < 0.05), higher D(1) receptor phosphorylation [(65 +/- 7) DU vs. (35 +/- 7) DU, P < 0.05] in renal cortical membranes and the diuretic and natriuretic effects after stimulation of renal D(1) receptor were impaired in GRK4gammaA142V transgenic mice. Inhibition of GRK4 expression (0.60 +/- 0.10 vs. 1.30 +/- 0.09, P < 0.05) by GRK4 antisense oligonucleotides upregulated D(1) receptor expression (1.5 +/- 0.2 vs. 0.8 +/- 0.1, P < 0.05) in HK-2 cells.
CONCLUSIONSOur results show that GRK4gammaA142V overexpression induced hypertension is mediated by dowregulated renal D(1) receptor expressions in GRK4gammaA142V transgenic mice.
Animals ; Blood Pressure ; Down-Regulation ; Female ; G-Protein-Coupled Receptor Kinase 4 ; genetics ; metabolism ; Gene Expression Regulation ; Hypertension ; genetics ; metabolism ; physiopathology ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Oligonucleotides, Antisense ; Phosphorylation ; Receptors, Dopamine D1 ; metabolism
10.Construction of RNAi vector of dopamine D1 receptor and identification of its silencing effects.
Hui LI ; Junmei XU ; Guixiu YUAN ; Jin LI ; Zhangling CHEN
Journal of Central South University(Medical Sciences) 2013;38(6):570-575
OBJECTIVE:
To construct dopamine D1 receptor (DRD1) expression interference vectors to study the role of DRD1 in nerve cells and lay a foundation for drug development in anti-convulsion.
METHODS:
Based on DRD1 gene sequence in GenBank, 10 interfere vectors of DRD1 were designed. Liposomal was used to transfect NG-108-15 and the transfect effect was assayed by GFP. With realtime PCR and Western blot, the DRD1 expression was detected.
RESULTS:
The 10 constructed interfere vectors transfected into NG-108-15 cells by liposomal method and inhibited DRD1 mRNA and protein expression. DRD1 mRNA expression in NG-108-15 cells transfected with pGPU6-GFP-Neo-si-DRD1-5 was the lowest whereas DRD1 protein expression in NG-108-15 cells transfected with pGPU6-GFP-Neo-si-DRD1-1, -2, -6, -7 was the lowest.
CONCLUSION
DRD1 expression interference vector is successfully constructed.
Animals
;
Cell Line, Tumor
;
Genetic Vectors
;
Glioma
;
pathology
;
Hybrid Cells
;
Liposomes
;
metabolism
;
Mice
;
Neuroblastoma
;
pathology
;
RNA Interference
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
Receptors, Dopamine D1
;
genetics
;
metabolism
;
Transfection