1.Endogenous corticotropin-releasing factor potentiates the excitability of presympathetic neurons in paraventricular nucleus via activation of its receptor 1 in spontaneously hypertensive rats.
Hong-Yu MA ; Xin-Qi GUO ; Qi-Yue ZHAO ; Pei-Yun YANG ; Huai-Bing ZHU ; Yue GUAN ; Yi ZHANG ; Hui-Jie MA
Acta Physiologica Sinica 2023;75(4):487-496
It is well established that increased excitability of the presympathetic neurons in the hypothalamic paraventricular nucleus (PVN) during hypertension leads to heightened sympathetic outflow and hypertension. However, the mechanism underlying the overactivation of PVN presympathetic neurons remains unclear. This study aimed to investigate the role of endogenous corticotropin-releasing factor (CRF) on the excitability of presympathetic neurons in PVN using Western blot, arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) recording, CRISPR/Cas9 technique and patch-clamp technique. The results showed that CRF protein expression in PVN was significantly upregulated in spontaneously hypertensive rats (SHRs) compared with normotensive Wistar-Kyoto (WKY) rats. Besides, PVN administration of exogenous CRF significantly increased RSNA, heart rate and ABP in WKY rats. In contrast, knockdown of upregulated CRF in PVN of SHRs inhibited CRF expression, led to membrane potential hyperpolarization, and decreased the frequency of current-evoked firings of PVN presympathetic neurons, which were reversed by incubation of exogenous CRF. Perfusion of rat brain slices with artificial cerebrospinal fluid containing CRF receptor 1 (CRFR1) blocker, NBI-35965, or CRF receptor 2 (CRFR2) blocker, Antisauvagine-30, showed that blocking CRFR1, but not CRFR2, hyperpolarized the membrane potential and inhibited the current-evoked firing of PVN presympathetic neurons in SHRs. However, blocking CRFR1 or CRFR2 did not affect the membrane potential and current-evoked firing of presympathetic neurons in WKY rats. Overall, these findings indicate that increased endogenous CRF release from PVN CRF neurons enhances the excitability of presympathetic neurons via activation of CRFR1 in SHRs.
Rats
;
Animals
;
Rats, Inbred SHR
;
Paraventricular Hypothalamic Nucleus/physiology*
;
Receptors, Corticotropin-Releasing Hormone/metabolism*
;
Rats, Inbred WKY
;
Corticotropin-Releasing Hormone/metabolism*
;
Neurons/physiology*
;
Hypertension
;
Sympathetic Nervous System
2.Effects of CRF receptor antagonist on rem sleep in neonatal rat.
Xue-dong LIU ; Hong-kun FAN ; Gui-hong ZHANG ; Shu-chun WANG ; Zhao ZHANG ; Ping-fu FENG
Chinese Journal of Applied Physiology 2010;26(1):86-89
OBJECTIVETo observe the role of NB127914, a CRF R1 receptor antagonist, in the regulation of neonatal sleep/wake cycle.
METHODSRat pups were surgically implanted with electrodes at postnatal day(PN) 13. At PN 14, 6 hours polysomnographic recording data were continuously collected before and after administration of various doses of NBI 27914, atropine and the same amount of saline.
RESULTSCompared with baseline, rapid eye movement (REM) sleep was significantly reduced and was replaced primarily by non-REM (NREM) sleep in all groups treated with NBI, but not with dimethyl sulfoxide/saline. Atropine suppressed REM sleep significantly and increased wakefulness simultaneously.
CONCLUSIONBlockage of corticotropin-releasing factor (CRF) R1 receptors deprives neonatal rat REM sleep.
Aniline Compounds ; pharmacology ; Animals ; Female ; Male ; Polysomnography ; Pyrimidines ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Corticotropin-Releasing Hormone ; antagonists & inhibitors ; Sleep, REM ; drug effects ; physiology ; Wakefulness ; drug effects ; physiology
3.Corticotropin-releasing Factor (CRF) and Urocortin Promote the Survival of Cultured Cerebellar GABAergic Neurons Through the Type 1 CRF Receptor.
Jae Sun CHOI ; Thao Thi Hien PHAM ; Yoon Jin JANG ; Bao Chi BUI ; Bong Hee LEE ; Kyeong Min JOO ; Choong Ik CHA ; Kyung Hoon LEE
Journal of Korean Medical Science 2006;21(3):518-526
Corticotropin releasing factor (CRF) is known to be involved in the stress response and in some degenerative brain disorders. In addition, CRF has a role as a neuromodulator in adult cerebellar circuits. Data from developmental studies suggest a putative role for CRF as a trophic factor during cerebellar development. In this study, we investigated the trophic role for CRF family of peptides by culturing cerebellar neurons in the presence of CRF, urocortin or urocortin II. Primary cell cultures of cerebella from embryonic day 18 mice were established, and cells were treated for either 1, 5 or 9 days with Basal Medium Eagles complete medium alone or complete medium with 1 micrometer CRF, urocortin, or urocortin II. The number of GABA-positive neurons in each treatment condition was counted at each culture age for monitoring the changes in neuronal survival. Treatment with 1 micrometer CRF or 1 micrometer urocortin increased the survival of GABAergic neurons at 6 days in vitro and 10 days in vitro, and this survival promoting effect was abolished by treatment with astressin in the presence of those peptides. Based on these data, we suggest that CRF or urocortin has a trophic role promoting the survival of cerebellar GABAergic neurons in cultures.
gamma-Aminobutyric Acid/*metabolism
;
Time Factors
;
Receptors, Corticotropin-Releasing Hormone/*metabolism
;
Peptides/chemistry
;
Neurons/*metabolism
;
Mice, Inbred C57BL
;
Mice
;
Immunohistochemistry
;
Image Processing, Computer-Assisted
;
Corticotropin-Releasing Hormone/biosynthesis/*physiology
;
Cerebellum/*embryology/*metabolism
;
Cells, Cultured
;
Cell Survival
;
Animals
4.The Effect of alpha MSH Analogues on Rat Bones.
Sung Kil LIM ; Song Zhe LI ; Yumie RHEE ; Sang Su CHUNG ; Yong Jun JIN ; Jong In YOOK
Yonsei Medical Journal 2002;43(4):500-510
Melanocortin is the downstream mediator of leptin signaling and absence of leptin signaling in ob/ob and db/db mice revealed the enhancement of bone formation through the central regulation. While alpha-melanocyte-stimulating hormone (alpha MSH) inhibits the secretion of interleukin-1 alpha and tumor necrosis factor-alpha from the inflammatory cells, alpha MSH can also enhance clonal expansion of pro B cells linked to stimulation of osteoclastogenesis. Therefore, we tested the effect of melanocortin on bones. alpha MSH analogues [6His] alpha MSH-ND and [6Asn] alpha MSH-ND were synthesized and the radio-ligand receptor binding- and cyclic AMP generating activity were analyzed in China Hamster Ovary cell line over- expressing melanocortin receptors. The EC50 of [6His] alpha MSH-ND measured from melanocortin-1, 3, 4 and 5 receptors were 0.008 0.0045, 1.523 0.707, 0.780 0.405, and 250.320 42.234 nM, respectively, and the EC50 of [6Asn] alpha MSH-ND were 16.8 6.94, 271.8 21.95, 8.0 1.21, and 1132.5 635.46 nM, respectively. Four weeks after the subcutaneous injection of the analogues, the body weights in the [6His] alpha MSH-ND and the [6Asn] alpha MSH-ND treated groups (346.0 20.63 g vs. 350.0 13.57 g) were lower than that of the vehicle treated group (375.8 17.31 g, p 0.05). There was no difference in the total femoral BMD measured by dual x-ray absorptiometry among the three groups. Among the three groups, there were no differences in the total numbers of crystal violet positive- or alkaline phosphatase positive colonies, in the expression of Receptor Activator of Nuclear Factor Kappa-B ligand on the tibia and the total number of multinucleated osteoclast-like cells differentiated from primary cultured bone marrow cells. From the above results, no evidence of bone gain or loss was found after treatment of the alpha MSH analogues peripherally.
Animal
;
Body Weight/drug effects
;
Bone and Bones/*drug effects
;
CHO Cells
;
Cyclic AMP/biosynthesis
;
Eating/drug effects
;
Hamsters
;
Male
;
Osteoblasts/drug effects/physiology
;
Osteoclasts/drug effects/physiology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Corticotropin/physiology
;
alpha-MSH/analogs & derivatives/*pharmacology
5.Bioactive compounds from Paecilomyces tenuipes regulating the function of the hypothalamo-hypophyseal system axis in chronic unpredictable stress rats.
Yan-Yan YIN ; Liang MING ; Li-Fang ZHENG ; Hong-Wei KAN ; Chun-Ru LI ; Wei-Ping LI
Chinese Medical Journal 2007;120(12):1088-1092
BACKGROUNDA bioactive compound from Paecilomyces tenuipes (BCPT) has an inhibitory effect on monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) in vitro and in vivo, which indicates BCPT may be a potential antidepressant. In this study we aimed to study the antidepressant effects of BCPT in the chronic unpredictable stress (CUS) model in rats and explore underlying mechanisms in the hypothalamic-pituitary-adrenal (HPA) axis.
METHODSThe antidepressant effects of BCPT were studied in the chronic unpredictable stress model in rats. Animals were housed isolated, except the control group. Rats were exposed daily to different random stressors from day 1 to 21. Awarding response was detected by calculating the 24-hour consumption of sucrose water. Cortisol (CORT) and adrenocorticotropic hormone (ATCH) contents in serum and arginine vasopressin (AVP) contents in the pituitary body were detected by radio immunoassays. Total RNA of hippocampus or hypothalamus was extracted and subjected to reverse transcription-polymerase chain reaction (RT-PCR) for the measurement of corticotrophin releasing hormone (CRH) mRNA or mineralocorticoid receptor (MR) mRNA and glucocorticoid receptor (GR) mRNA levels. Statistical analyses were performed using one way analysis of variance (ANOVA) followed by Student-Newman-Keuls (SNK) test.
RESULTSChronic unpredictable stress resulted in reduction of sensitivity to reward and abnormality in the HPA axis in the animal model. BCPT improved the reward reaction as measured by increasing sucrose consumption, remarkably reduced serum CORT and ACTH levels and the AVP content in the pituitary body in the CUS-treated rats, decreased the expression of CRH mRNA, enhanced the expression of hippocampus MR mRNA, GR mRNA and decreased the ratio of MR/GR.
CONCLUSIONSBCPT has potentially antidepressant-like activity and normalized the HPA axis hyperactivity in a CUS model of depression in rats. This may be an important mechanism of its antidepressant effect.
Animals ; Antidepressive Agents ; pharmacology ; Chronic Disease ; Corticotropin-Releasing Hormone ; genetics ; Hydrocortisone ; blood ; Hypothalamo-Hypophyseal System ; drug effects ; physiology ; Male ; Monoamine Oxidase Inhibitors ; pharmacology ; Paecilomyces ; chemistry ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Receptors, Glucocorticoid ; genetics ; Receptors, Mineralocorticoid ; genetics ; Stress, Psychological ; physiopathology ; Sucrose ; administration & dosage