1.The Effect of Urocortin 1 on Motility in Isolated, Vascularly Perfused Rat Colon.
Il Young YOU ; Seungho LEE ; Ki Bae KIM ; Hee Seung LEE ; Jong Soon JANG ; Myeongho YEON ; Joung Ho HAN ; Soon Man YOON ; Hee Bok CHAE ; Seon Mee PARK ; Sei Jin YOUN
The Korean Journal of Gastroenterology 2015;65(5):283-290
BACKGROUND/AIMS: Urocortin 1, a corticotropin-releasing factor related peptide, increases colonic motility under stressful conditions. We investigated the effect of urocortin 1 on colonic motility using an experimental model with isolated rat colon in which the blood flow and intestinal nerves were preserved. Furthermore, we assessed whether this effect was mediated by adrenergic or cholinergic nerves. METHODS: Colonic motility was measured in the proximal and distal parts of resected rat colon. The colon resected from the peritoneum was stabilized, and then urocortin 1 (13.8, 138, 277, and 1,388 pM) was administered via a blood vessel. Motility index was measured in the last 5 min of the 15 min administration of urocortin 1 and expressed as percentage change from baseline. Subsequently, the change in motility was measured by perfusing urocortin 1 in colons pretreated with phentolamine, propranolol, hexamethonium, atropine, or tetrodotoxin. RESULTS: At concentrations of 13.8, 138, 277, and 1,388 pM, urocortin 1 increased the motility of proximal colon (20.4+/-7.2%, 48.4+/-20.9%, 67.0+/-25.8%, and 64.2+/-20.9%, respectively) and the motility of distal colon (3.3+/-3.3%, 7.8+/-7.8%, 71.1+/-28.6%, and 87.4+/-32.5%, respectively). The motility induced by urocortin 1 was significantly decreased by atropine to 2.4+/-2.4% in proximal colon and 3.4+/-3.4% in distal colon (p<0.05). However, tetrodotoxin, propranolol, phentolamine, and hexamethonium did not inhibit motility. CONCLUSIONS: Urocortin 1 increased colonic motility and it is considered that this effect was directly mediated by local muscarinic cholinergic receptors.
Animals
;
Colon/*drug effects/physiology
;
Injections, Intravenous
;
Male
;
Muscle Contraction/drug effects
;
Neurotransmitter Agents/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cholinergic/chemistry/metabolism
;
Urocortins/isolation & purification/*pharmacology
2.Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor.
Huiyoung KWON ; Ji Wook JUNG ; Young Choon LEE ; Jong Hoon RYU ; Dong Hyun KIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):428-435
Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.
Acetylcholinesterase
;
metabolism
;
Animals
;
Artemisia
;
Cell Death
;
drug effects
;
Cholinergic Antagonists
;
pharmacology
;
Disease Models, Animal
;
Ethanol
;
chemistry
;
Hippocampus
;
pathology
;
physiopathology
;
Ischemic Attack, Transient
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Mecamylamine
;
pharmacology
;
Memory
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Phytotherapy
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Receptors, Cholinergic
;
metabolism
3.Five subtypes of muscarinic receptors are expressed in gastric smooth muscles of guinea pig.
Insuk SO ; Dong Ki YANG ; Hyun Jin KIM ; Kyung Wan MIN ; Tong Mook KANG ; Sung Joon KIM ; Ki Whan KIM ; Ki Ho PARK ; Ju Hong JEON ; Kyung Ho CHOI ; In Gyu KIM
Experimental & Molecular Medicine 2003;35(1):46-52
Muscarinic receptors play key roles in the control of gastrointestinal smooth muscle activity. However, specific physiological functions of each subtype remain to be determined. In this study, the nonselective cation channel activated by carbachol (ICCh) was examined in circular smooth muscle cells of the guinea pig gastric antrum using patch-clamp technique. 4-DAMP inhibited ICCh dose- dependently with IC50 of 1.1 +/- 0.1 nM (n = 6). GTPgS- induced current, however, was not inhibited by 10 nM 4-DAMP. ICCh was not recorded in pertussis- toxin (PTX)-pretreated smooth muscle cells of gastric antrum. ICCh values in response to 10 mM CCh at a holding potential of 60 mV were -330 32 pA (n=4) and -15 +/- 3 pA (n = 6) in the control and PTX-treated cells, respectively (P<0.01). Sensitivities to nanomolar 4-DAMP and PTX suggest the possible involvement of m4 subtype. Using sequence information obtained from cloned guinea pig muscarinic receptor genes, it is possible to amplify the cDNAs encoding m1-m5 from guinea pig brain tissue. Single cell RT-PCR experiments showed that all five subtypes of muscarinic receptor were present in circular smooth muscle cells of the guinea pig gastric antrum. Together with our previous results showing that Go protein is important for activation of ACh-activated NSC channels, our results suggest that ICCh might be activated by acetylcholine through m4 subtype as well as m2 and m3 subtypes in guinea-pig stomach.
Animals
;
Base Sequence
;
Carbachol/pharmacology
;
Cations
;
Cholinergic Agonists/pharmacology
;
Dose-Response Relationship, Drug
;
Drug Interactions
;
Guinea Pigs
;
Ion Channels/drug effects/metabolism/physiology
;
Muscarinic Antagonists/pharmacology
;
Muscle Contraction/drug effects
;
Muscle, Smooth/drug effects/*metabolism
;
Piperidines/pharmacology
;
Receptors, Muscarinic/chemistry/classification/*metabolism
;
Stomach/drug effects/*metabolism