1.The Cannabinoid Agonist WIN55,212-2 Suppresses Opioid-induced Pruritus in Mice.
Anesthesia and Pain Medicine 2008;3(3):167-171
BACKGROUND: Cannabinoid receptor agonists can reverse opioidinduced nausea and vomiting in animals, but have not yet been tested against opioid-induced pruritus. This study tests the hypothesis that a cannabinoid receptor agonist will prevent opioidinduced pruritus and evaluates if the use of a cannabinoid receptor agonist will increase the analgesic efficacy of opioids. METHODS: Various doses of fentanyl were injected subcutaneously in mice to obtain a dose-response curve with the use of a writhing test. To observe the analgesic potentiation of the cannabinoid agonist WIN55,212-2 in the writhing test, mice were pretreated with various concentrations of WIN55,212-2 (0.25, 0.5, 1.0, 2.0 mg/kg) 10 min prior to the injection of an ED50 dose of fentanyl, as determined from the dose-response curve. To observe the antipruritogenic effect of WIN55,212-2 in a scratching test, mice were pretreated with WIN55,212-2 (0.25, 0.5 mg/kg) 20 min prior to fentanyl injection. A CB1 receptor selective antagonist, AM251 (3 mg/kg), was used to confirm the cannabinoid receptor selectivity. RESULTS: The ED50 of fentanyl in the writhing test was 0.018 mg/kg (range, 0.011?0.025 mg/kg). A dose of 1 mg/kg WIN55,212-2 increased the analgesic efficacy of fentanyl significantly (P < 0.001), but doses of 0.25 mg/kg and 0.5 mg/kg did not increase the analgesic efficacy. A dose of 0.25 mg/kg WIN55,212-5 reduced the scratching response of fentanyl significantly (P < 0.001) and this action was a cannabinoid receptor selective response. CONCLUSIONS: These results demonstrate that 0.25 mg/kg WIN55,212-2 can prevent opioid-induced pruritus. The antipruritogenic activity of WIN55,212-2 occurs at CB1 receptors even if the analgesic efficacy of fentanyl cannot be increased.
Analgesics, Opioid
;
Animals
;
Cannabinoid Receptor Agonists
;
Fentanyl
;
Mice
;
Nausea
;
Piperidines
;
Pruritus
;
Pyrazoles
;
Receptor, Cannabinoid, CB1
;
Receptors, Cannabinoid
;
Vomiting
2.Research progress of role of cannabinoid receptor in fibrosis.
Shanshan LI ; Linlin WANG ; Min LIU ; Yanling GAO ; Zhiling TIAN ; Shukun JIANG ; Miao ZHANG ; Dawei GUAN
Chinese Journal of Pathology 2014;43(2):136-138
Animals
;
Cannabinoid Receptor Antagonists
;
therapeutic use
;
Cannabinoids
;
pharmacology
;
Fibrosis
;
metabolism
;
Humans
;
Liver Cirrhosis
;
etiology
;
metabolism
;
therapy
;
Piperidines
;
therapeutic use
;
Pyrazoles
;
therapeutic use
;
Receptor, Cannabinoid, CB1
;
metabolism
;
Receptor, Cannabinoid, CB2
;
metabolism
;
Receptors, Cannabinoid
;
metabolism
;
Scleroderma, Diffuse
;
metabolism
;
Signal Transduction
;
drug effects
;
Skin
;
metabolism
;
Smad Proteins
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
3.The Role of Peripheral Cannabinoid Receptors Type 1 in Rats With Visceral Hypersensitivity Induced by Chronic Restraint Stress.
Lei SHEN ; Xiao jun YANG ; Wei QIAN ; Xiao hua HOU
Journal of Neurogastroenterology and Motility 2010;16(3):281-290
BACKGROUND/AIMS: This study was designed to investigate the possibility that the enhanced nociceptive responsiveness associated with canabonoid type 1 receptors (CB1Rs) and identify its role in mediating visceral hypersensitivity induced by chronic restraint stress. METHODS: Rats were exposed to daily partial restraint stress or sham partial restraint stress with intraperitoneal injection of the vehicle, CB1R agonist or antagonist for 4 consecutive days. We tested the visceromotor reflex to colorectal distention at day 0 and 5. Reverse-transcription polymerase chain reaction and Western blot were used to assess the expression of CB1Rs. RESULTS: Intraperitoneal CB1 agonist (ACEA) injection significantly diminished (p < 0.05) the enhanced visceromotor reflex to colorectal distention at day 5 in stressed rats. Change in electromyogram response after ACEA over baseline, at pressure of 40 mmHg (+13.3 +/- 2.2), 60 mmHg (+15.3 +/- 2.8) and 80 mmHg (+17.0 +/- 4.0) were much lower than in the control animals, which were +35.9 +/- 5.1, +41.1 +/- 6.3 and +54.1 +/- 9.6, respectively. Whereas, CB1 antagonist (SR141716A) had an opposite effect. Compared with control group, the change in electromyogram response after SR141716A over baseline was significantly enhanced (p < 0.05) for the distending pressure of 40 mmHg (+56.0 +/- 10.3), 60 mmHg (+74.6 +/- 12.3) and 80 mmHg (+82.9 +/- 11.0), respectively. Reverse-transcription polymerase chain reaction and Western blotting demonstrated the stress-induced up-regulation of colon CB1Rs (p < 0.05). CONCLUSIONS: Our results suggest there is a key contribution of peripheral CB1Rs involved in the maintenance of visceral hyperalgesia after repeated restraint stress, providing a novel mechanism for development of peripheral visceral sensitization.
Animals
;
Blotting, Western
;
Colon
;
Hyperalgesia
;
Hypersensitivity
;
Injections, Intraperitoneal
;
Irritable Bowel Syndrome
;
Negotiating
;
Piperidines
;
Polymerase Chain Reaction
;
Pyrazoles
;
Rats
;
Receptor, Cannabinoid, CB1
;
Receptors, Cannabinoid
;
Reflex
;
Salicylamides
;
Up-Regulation
4.A Cannabinoid Receptor Agonist N-Arachidonoyl Dopamine Inhibits Adipocyte Differentiation in Human Mesenchymal Stem Cells.
Seyeon AHN ; Sodam YI ; Won Jong SEO ; Myeong Jung LEE ; Young Keun SONG ; Seung Yong BAEK ; Jinha YU ; Soo Hyun HONG ; Jinyoung LEE ; Dong Wook SHIN ; Lak Shin JEONG ; Minsoo NOH
Biomolecules & Therapeutics 2015;23(3):218-224
Endocannabinoids can affect multiple cellular targets, such as cannabinoid (CB) receptors, transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and peroxisome proliferator-activated receptor gamma (PPARgamma). The stimuli to induce adipocyte differentiation in hBM-MSCs increase the gene transcription of the CB1 receptor, TRPV1 and PPARgamma. In this study, the effects of three endocannabinoids, N-arachidonoyl ethanolamine (AEA), N-arachidonoyl dopamine (NADA) and 2-arachidonoyl glycerol (2-AG), on adipogenesis in hBM-MSCs were evaluated. The adipocyte differentiation was promoted by AEA whereas inhibited by NADA. No change was observed by the treatment of non-cytotoxic concentrations of 2-AG. The difference between AEA and NADA in the regulation of adipogenesis is associated with their effects on PPARgamma transactivation. AEA can directly activate PPARgamma. The effect of AEA on PPARgamma in hBM-MSCs may prevail over that on the CB1 receptor mediated signal transduction, giving rise to the AEA-induced promotion of adipogenesis. In contrast, NADA had no effect on the PPARgamma activity in the PPARgamma transactivation assay. The inhibitory effect of NADA on adipogenesis in hBM-MSCs was reversed not by capsazepine, a TRPV1 antagonist, but by rimonabant, a CB1 antagonist/inverse agonist. Rimonabant by itself promoted adipogenesis in hBM-MSCs, which may be interpreted as the result of the inverse agonism of the CB1 receptor. This result suggests that the constantly active CB1 receptor may contribute to suppress the adipocyte differentiation of hBM-MSCs. Therefore, the selective CB1 agonists that are unable to affect cellular PPARgamma activity inhibit adipogenesis in hBM-MSCs.
Adipocytes*
;
Adipogenesis
;
Dopamine*
;
Endocannabinoids
;
Ethanolamine
;
Felodipine
;
Glycerol
;
Humans
;
Mesenchymal Stromal Cells*
;
PPAR gamma
;
Receptor, Cannabinoid, CB1
;
Receptors, Cannabinoid*
;
Signal Transduction
;
Transcriptional Activation
5.Relationship between Expression Changes of CB2R and Wound Age of Brain Contusion in Mice.
Jing-wei CHEN ; Peng-fei WANG ; Meng-zhou ZHANG ; Zhong-duo ZHANG ; Hao CHENG ; Ying-fu SUN ; Shu-heng WEN ; Xiang-shen GUO ; Rui ZHAO ; Da-wei GUAN
Journal of Forensic Medicine 2019;35(2):136-142
Objective To investigate the expression of cannabinoid type 2 receptor (CB2R) at different time points after brain contusion and its relationship with wound age of mice. Methods A mouse brain contusion model was established with PCI3000 Precision Cortical Impactor. Expression changes of CB2R around the injured area were detected with immunohistochemical staining, immunofluorescent staining and Western blotting at different time points. Results Immunohistochemical staining results showed that only a few cells in the cerebral cortex of the sham operated group had CB2R positive expression. The ratio of CB2R positive cells gradually increased after injury and reached the peak twice at 12 h and 7 d post-injury, followed by a decrease to the normal level 28 d post-injury. The results of Western blotting were consistent with the immunohistochemical staining results. Immunofluorescent staining demonstrated that the changes of the ratio of CB2R positive cells in neurons, CB2R positive cells in monocytes and CB2R positive cells in astrocytes to the total cell number showed a single peak pattern, which peaked at 12 h, 1 d and 7 d post-injury, respectively. Conclusion The expression of CB2R after brain contusion in neurons, monocytes and astrocytes in mice suggests that it is likely to be involved in the regulation of the biological functions of those cells. The changes in CB2R are time-dependent, which suggests its potential applicability as a biological indicator for wound age estimation of brain contusion in forensic practice.
Animals
;
Blotting, Western
;
Brain Contusion/metabolism*
;
Brain Injuries
;
Forensic Pathology
;
Mice
;
Muscle, Skeletal/pathology*
;
Receptor, Cannabinoid, CB2/metabolism*
;
Receptors, Cannabinoid
;
Time Factors
;
Wound Healing/physiology*
7.Research progress on anti-inflammatory effects of plant-derived cannabinoid type 2 receptor modulators.
Chen-Xia LIAN ; Si-Jing HU ; Qiao-Yan ZHANG ; Qi-Ming ZHAO ; Lu-Ping QIN ; Wan GONG
China Journal of Chinese Materia Medica 2023;48(23):6294-6306
Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.
Cannabinoid Receptor Modulators/pharmacology*
;
Cannabinoid Receptor Agonists/pharmacology*
;
Receptors, Cannabinoid
;
Cannabinoids/pharmacology*
;
Anti-Inflammatory Agents/pharmacology*
8.Functional activity of the cannabinoid 1 receptor is not affected by opioid antagonists in the rat brain.
Korean Journal of Anesthesiology 2013;64(3):257-261
BACKGROUND: WIN55212-2 is a synthetic cannabinoid agonist and selective to cannabinoid 1 (CB1) receptors, which are distributed mainly in the central nervous system. Opioid receptors and CB1 receptors have several similarities in terms of their intracellular signal transduction mechanisms, distributions, and pharmacological action. Several studies have therefore sought to describe the functional interactions between opioids and cannabinoids at the cellular and behavioral levels. The present study investigated agonist-stimulated [35S]GTPgammaS binding by WIN55212-2 in rat brain membranes and determined the antagonism by selective opioid antagonists at the level of receptor-ligand interaction and intracellular signal transduction. METHODS: Sprague-Dawley rats (male, n = 20) were euthanized for the preparation of brain membranes. In agonist-stimulated [35S]GTPgammaS binding by WIN55212-2, the values of EC50 and maximum stimulation (% over basal) were determined in the absence or presence of the micro, kappa and delta opioid receptor antagonists naloxone (20 nM), norbinaltorphimine (3 nM), and naltrindole (3 nM), respectively. Ke values for opioid antagonist inhibition in the absence or presence of each opioid receptor antagonist were calculated using the following equation: [nanomolar antagonist] / (dose ratio of EC50 - 1). RESULTS: In WIN55212-2-stimulated [35S]GTPgammaS binding in the rat brain membranes, the values of EC50 and maximum stimulation (% over basal) were 154 +/- 39.5 nM and 27.6 +/- 5.3% over basal, respectively. Addition of selective opioid antagonists did not produce a significant rightward shift in the WIN55212-2 concentration-response curve, and Ke values were not applicable. CONCLUSIONS: Our results suggest that the functional activity of WIN55212-2-stimulated [35S]GTPgammaS binding was not affected by opioid antagonists in the rat brain membranes. Although the exact mechanism remains unclear, our results may partially elucidate their actions.
Analgesics, Opioid
;
Animals
;
Benzoxazines
;
Brain
;
Cannabinoids
;
Central Nervous System
;
Membranes
;
Morpholines
;
Naloxone
;
Naltrexone
;
Naphthalenes
;
Narcotic Antagonists
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Cannabinoid, CB1
;
Receptors, Opioid
;
Receptors, Opioid, delta
;
Signal Transduction
9.New targeted compounds-biosynthesis of phytocannabinoids.
Ping GAO ; Yuxian CHEN ; Chongrong KE ; Xinwei YANG ; Jianzhong HUANG
Chinese Journal of Biotechnology 2021;37(6):1968-1985
Phytocannabinoids are bioactive terpenoids that are exclusive to Cannabis sativa L. The main pharmacologically active phytocannabinoids are Δ9-tetrahydrocannabinol and cannabidiol, both target endogenous cannabinoid receptors. Δ9-tetrahydrocannabinol and cannabidiol have extensive therapeutic potential due to their participation in many physiological and pathological processes in human body by activating the endocannabinoid system. At present, Δ9-tetrahydrocannabinol, cannabidiol and their analogues or combination preparations are used to treat epilepsy, vomiting in patients with cancer chemotherapy, spasticity in multiple sclerosis and relieve neuropathic pain and pain in patients with advanced cancer. With the further exploration of the application value of Δ9-tetrahydrocannabinol and cannabidiol as well as the increasing demand for standardization of pharmaceutical preparations, it is imminent to achieve large-scale production of Δ9-tetrahydrocannabinol and cannabidiol in the pharmaceutical industry. In this article, pharmacological research progress of phytocannabinoids in recent years, biosynthetic pathways of phytocannabinoids and the mechanism of key enzymes as well as various product development strategies of cannabinoids in pharmaceutical industry are reviewed. By exploring the potential of synthetic biology as an alternative strategy for the source of phytocannabinoids, it will provide a theoretical basis for the research and development of microbial engineering for cannabinoids synthesis, and promote the large-scale production of medicinal cannabinoids.
Cannabidiol
;
Cannabinoids/biosynthesis*
;
Cannabis
;
Humans
;
Receptors, Cannabinoid
10.SR144528 as Inverse Agonist of CB2 Cannabinoid Receptor.
Journal of Veterinary Science 2002;3(3):179-184
It is now well established that several G protein- coupled receptors can signal without agonist stimulation (constitutive receptors). Inverse agonists have been shown to inhibit the activity of such constitutive G protein-coupled receptor signaling. Agonist activation of the Gi/o-coupled peripheral cannabinoid receptor CB2 normally inhibits adenylyl cyclase type V and stimulates adenylyl cyclase type II. Using transfected COS cells, we show here that application of SR144528, an inverse agonist of CB2, leads to a reverse action (stimulation of adenylyl cyclase V and inhibition of adenylyl cyclase II). This inverse agonism of SR144528 is dependent on the temperature, as well as on the concentration of the cDNA of CB2 transfected. Pertussis toxin blocked the regulation of adenylyl cyclase activity by SR 144528.
Adenylate Cyclase/antagonists&inhibitors/genetics/metabolism
;
Animals
;
Binding, Competitive
;
Bornanes/metabolism/*pharmacology
;
COS Cells
;
Cannabinoids/metabolism
;
Cercopithecus aethiops
;
Isoenzymes/antagonists&inhibitors/genetics/metabolism
;
Pyrazoles/metabolism/*pharmacology
;
Rats
;
*Receptor, Cannabinoid, CB2
;
Receptors, Cannabinoid
;
Receptors, Drug/agonists/*antagonists&inhibitors/genetics/metabolism
;
Signal Transduction/drug effects/physiology
;
Transfection