1.Role of orphan G protein-coupled receptor 55 in diabetic gastroparesis in mice.
Xu-Hong LIN ; ; Dan-Dan WEI ; Hui-Chao WANG ; Bin WANG ; Chun-Yang BAI ; Ya-Qiang WANG ; Guo-En LI ; Hui-Ping LI ; Xue-Qun REN
Acta Physiologica Sinica 2014;66(3):332-340
The aim of the present study was to explore the role of orphan G protein-coupled receptor 55 (GPR55) in diabetic gastroparesis (DG). Streptozotocin (STZ) was used to mimic the DG model, and the body weight and blood glucose concentration were tested 4 weeks after STZ injection (i.p.). Electrogastrogram and phenolsulfonphthalein test were used for detecting gastric emptying. Motilin (MTL), gastrin (GAS), vasoactive intestinal peptide (VIP), and somatostatin (SS) levels in plasma were determined using radioimmunology. Real-time PCR and Western blot were applied to identify the expression of GPR55 in gastric tissue, and immunohistochemistry was used to detect the distribution. The effect of lysophosphatidylinositol (LPI), an agonist of GPR55, was observed. STZ mice showed increased blood glucose concentration, lower body weight, decreased amplitude of slow wave, and delayed gastric emptying. LPI antagonized these effects of STZ. Compared to the control group, STZ caused significant decreases of MTL and GAS levels (P < 0.01), as well as increases of SS and VIP levels (P < 0.01). The changes of these hormones induced by STZ were counteracted when using LPI. GPR55 located in mice stomach, and it was up-regulated in DG. Although LPI showed no effects on the distribution and expression of GPR55 in normal mice, it could inhibit STZ-induced GPR55 up-regulation. These results suggest GPR55 is involved in the regulation of gastric movement of DG, and may serve as a new target of DG treatment. LPI, an agonist of GPR55, can protect against STZ-induced DG, and the mechanism may involve the change of GPR55 expression and modification of gastrointestinal movement regulating hormones.
Animals
;
Diabetes Mellitus, Experimental
;
metabolism
;
pathology
;
Gastroparesis
;
metabolism
;
pathology
;
Lysophospholipids
;
pharmacology
;
Mice
;
Receptors, Cannabinoid
;
metabolism
2.The endocannabinoid system: a new pharmacological target for obesity treatment?
Neuroscience Bulletin 2009;25(3):153-160
Being a great threaten for human health, obesity has become a pandemic chronic disease. There have been several therapeutic treatments for this social health issue, including diet and exercise therapy, medication and surgery, among which the diet is still the most common way. However, none of these therapeutic measures available is ideal, making it necessary to find an effective medical treatment. The endocannabinoid system, which is well known for its contributions in certain mental processes such as relaxation, amelioration of pain and anxiety, and sedation initiation, has been recently reported to play an essential role in regulating appetite and metabolism to maintain energy balance, leading to the belief that endocannabinoid system is closely related to obesity. This new discovery deepens our understanding of obesity, and provides us with a new direction for clinical obesity treatment. Rimonabant is an antagonist for CB1, and has entered the market in some countries. However, although effective as an anti-obesity drug, rimonabant also causes obviously adverse side-effects, thus is being doubted and denied for medical usage.
Animals
;
Anti-Obesity Agents
;
therapeutic use
;
Cannabinoid Receptor Modulators
;
antagonists & inhibitors
;
metabolism
;
Endocannabinoids
;
Humans
;
Obesity
;
drug therapy
;
metabolism
;
Piperidines
;
therapeutic use
;
Pyrazoles
;
therapeutic use
;
Receptors, Cannabinoid
;
metabolism
3.Relationship between Expression Changes of CB2R and Wound Age of Brain Contusion in Mice.
Jing-wei CHEN ; Peng-fei WANG ; Meng-zhou ZHANG ; Zhong-duo ZHANG ; Hao CHENG ; Ying-fu SUN ; Shu-heng WEN ; Xiang-shen GUO ; Rui ZHAO ; Da-wei GUAN
Journal of Forensic Medicine 2019;35(2):136-142
Objective To investigate the expression of cannabinoid type 2 receptor (CB2R) at different time points after brain contusion and its relationship with wound age of mice. Methods A mouse brain contusion model was established with PCI3000 Precision Cortical Impactor. Expression changes of CB2R around the injured area were detected with immunohistochemical staining, immunofluorescent staining and Western blotting at different time points. Results Immunohistochemical staining results showed that only a few cells in the cerebral cortex of the sham operated group had CB2R positive expression. The ratio of CB2R positive cells gradually increased after injury and reached the peak twice at 12 h and 7 d post-injury, followed by a decrease to the normal level 28 d post-injury. The results of Western blotting were consistent with the immunohistochemical staining results. Immunofluorescent staining demonstrated that the changes of the ratio of CB2R positive cells in neurons, CB2R positive cells in monocytes and CB2R positive cells in astrocytes to the total cell number showed a single peak pattern, which peaked at 12 h, 1 d and 7 d post-injury, respectively. Conclusion The expression of CB2R after brain contusion in neurons, monocytes and astrocytes in mice suggests that it is likely to be involved in the regulation of the biological functions of those cells. The changes in CB2R are time-dependent, which suggests its potential applicability as a biological indicator for wound age estimation of brain contusion in forensic practice.
Animals
;
Blotting, Western
;
Brain Contusion/metabolism*
;
Brain Injuries
;
Forensic Pathology
;
Mice
;
Muscle, Skeletal/pathology*
;
Receptor, Cannabinoid, CB2/metabolism*
;
Receptors, Cannabinoid
;
Time Factors
;
Wound Healing/physiology*
4.Research progress of role of cannabinoid receptor in fibrosis.
Shanshan LI ; Linlin WANG ; Min LIU ; Yanling GAO ; Zhiling TIAN ; Shukun JIANG ; Miao ZHANG ; Dawei GUAN
Chinese Journal of Pathology 2014;43(2):136-138
Animals
;
Cannabinoid Receptor Antagonists
;
therapeutic use
;
Cannabinoids
;
pharmacology
;
Fibrosis
;
metabolism
;
Humans
;
Liver Cirrhosis
;
etiology
;
metabolism
;
therapy
;
Piperidines
;
therapeutic use
;
Pyrazoles
;
therapeutic use
;
Receptor, Cannabinoid, CB1
;
metabolism
;
Receptor, Cannabinoid, CB2
;
metabolism
;
Receptors, Cannabinoid
;
metabolism
;
Scleroderma, Diffuse
;
metabolism
;
Signal Transduction
;
drug effects
;
Skin
;
metabolism
;
Smad Proteins
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
5.SR144528 as Inverse Agonist of CB2 Cannabinoid Receptor.
Journal of Veterinary Science 2002;3(3):179-184
It is now well established that several G protein- coupled receptors can signal without agonist stimulation (constitutive receptors). Inverse agonists have been shown to inhibit the activity of such constitutive G protein-coupled receptor signaling. Agonist activation of the Gi/o-coupled peripheral cannabinoid receptor CB2 normally inhibits adenylyl cyclase type V and stimulates adenylyl cyclase type II. Using transfected COS cells, we show here that application of SR144528, an inverse agonist of CB2, leads to a reverse action (stimulation of adenylyl cyclase V and inhibition of adenylyl cyclase II). This inverse agonism of SR144528 is dependent on the temperature, as well as on the concentration of the cDNA of CB2 transfected. Pertussis toxin blocked the regulation of adenylyl cyclase activity by SR 144528.
Adenylate Cyclase/antagonists&inhibitors/genetics/metabolism
;
Animals
;
Binding, Competitive
;
Bornanes/metabolism/*pharmacology
;
COS Cells
;
Cannabinoids/metabolism
;
Cercopithecus aethiops
;
Isoenzymes/antagonists&inhibitors/genetics/metabolism
;
Pyrazoles/metabolism/*pharmacology
;
Rats
;
*Receptor, Cannabinoid, CB2
;
Receptors, Cannabinoid
;
Receptors, Drug/agonists/*antagonists&inhibitors/genetics/metabolism
;
Signal Transduction/drug effects/physiology
;
Transfection
6.Activation of cannabinoid receptor 2 alleviates acute lung injury in rats with lipopolysaccharide-induced sepsis.
Hui Wen KANG ; Shou Fang JIANG ; Qian SONG ; Yi Li ZHANG
Journal of Southern Medical University 2022;42(9):1374-1380
OBJECTIVE:
To investigate the protective effect of cannabinoid receptor 2 (CB2) activation against acute lung injury in rats with lipopolysaccharide (LPS)-induced sepsis and explore the underlying mechanism.
METHODS:
Forty-eight SD rats were randomly assigned into control group, model group, CB2 agonist group and P38 MAPK inhibitor group (n=12). In the latter 3 groups, the rats received intraperitoneal injection of LPS to induce sepsis, and the control rats were given saline injection. In CB2 agonist group, JWH133 (3 mg/kg) was injected intraperitoneally 30 min before LPS injection; in P38 MAPK inhibitor group, the rats received intraperitoneal injection of SB203580 (5 mg/kg) 30 min prior to JWH133 injection. The changes in lung histopathology, water content, fluid clearance rate, inflammatory factors, pulmonary expressions of CB2 and tight junctionrelated genes, and phosphorylation of P38 MAPK in the lung tissues were examined.
RESULTS:
The rat models of sepsis showed severe damage of alveolar structures with significantly decreased fluid clearance rate, lowered pulmonary expressions of CB2, occludin and ZO-1 mRNA and proteins, increased water content in the lung tissue, and increased phosphorylation level of P38 MAPK and TNF-α and IL-1β levels in lung lavage fluid (all P < 0.05). Treatment with JWH133 improved alveolar pathology in the septic rats, but there was still inflammatory infiltration; lung tissue water content, phosphorylation of P38 MAPK, and TNF-α and IL-1β levels in lung lavage fluid were all significantly decreased, and the fluid clearance rate, pulmonary expressions of CB2, occludin and ZO-1 were significantly increased (all P < 0.05). Additional treatment with SB203580 resulted in further improvements of alveolar pathologies, lowered phosphorylation levels of P38 MAPK in the lung tissue and TNF-α and IL-1β levels in lung lavage fluid, and increased the protein expressions of occludin and ZO-1 (P < 0.05) without causing significant changes in mRNA and protein expression of CB2 (P > 0.05).
CONCLUSION
In rats with LPS-induced sepsis, activation of CB2 can inhibit the p38 MAPK signaling pathway, reduce the release of inflammatory factors in the lung tissues, promote tight junction protein expressions, and thus offer protection against acute lung injury.
Acute Lung Injury/metabolism*
;
Animals
;
Cannabinoids
;
Lipopolysaccharides/adverse effects*
;
Lung/pathology*
;
Occludin/metabolism*
;
RNA, Messenger/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Cannabinoid, CB2
;
Receptors, Cannabinoid/metabolism*
;
Sepsis/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Water/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
7.Frontier of Epilepsy Research - mTOR signaling pathway.
Experimental & Molecular Medicine 2011;43(5):231-274
Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism.
Astrocytes/metabolism
;
Cell Death
;
Epilepsy/diet therapy/drug therapy/*metabolism/virology
;
Humans
;
Ketogenic Diet
;
Protein Binding/physiology
;
Protein Kinase Inhibitors/therapeutic use
;
Receptors, Cannabinoid/metabolism
;
Signal Transduction/*physiology
;
Synapses/metabolism
;
TOR Serine-Threonine Kinases/antagonists & inhibitors/*metabolism
;
Temporal Lobe/metabolism
8.Functional Role of Serine Residues of Transmembrane Dopamin VII in Signal Transduction of CB2 Cannabinoid Receptor.
Journal of Veterinary Science 2002;3(3):185-191
Using site-directed mutagenesis technique, I have replaced serine 285 and serine 292 with the alanine, and assessed the binding of agonist and signaling such as the inhibition of adenylyl cyclase activity.I have found that serine 292 has an important role in the signal transduction of cannabinoid agonists, HU-210 and CP55940, but not in that of aminoalkylindoles derivatives WIN55,212-2. All mutants express well in protein level determined by western blot using monoclonal antibody HA 11 as compared with the wild type receptor.Interestingly, binding affinity of S285A and S292A mutants with classical cannabinoid agonist HU-243 was somewhat decreased. In signaling assay, the inhibition of adenylyl cyclase by HU-210, CP55940 and WIN55, 212-2 is the same order in both wild type receptor and S285A mutant receptor. However, S292A have been shown that the inhibition curves of adenylyl cyclase activity moved to the right by HU-210 and CP55940, but those of adenylyl cyclase activity did not by aminoalkylindole WIN55,212-2, which is indicating that this residue is closely related to the binding site with HU-210 and CP55940. In addition, serine 292 might take more important role in CB2 receptor and G-protein signaling than serine 285.
Adenylate Cyclase/*metabolism
;
Animals
;
Binding, Competitive
;
Blotting, Western
;
COS Cells
;
Cannabinoids/metabolism
;
Cercopithecus aethiops
;
Cyclohexanols/metabolism
;
Excitatory Amino Acid Antagonists/metabolism
;
Mutagenesis, Site-Directed
;
Protein Conformation
;
Protein Structure, Tertiary
;
Receptors, Cannabinoid
;
Receptors, Drug/genetics/metabolism/*physiology
;
Serine/metabolism/*physiology
;
Signal Transduction/physiology
;
Tetrahydrocannabinol/*analogs&derivatives/metabolism
;
Transfection