1.Analyses of the TCR repertoire of MHC class II-restricted innate CD4+ T cells.
Byung Hyun KANG ; Hye Sook MIN ; You Jeong LEE ; Bomi CHOI ; Eun Ji KIM ; Jonghoon LEE ; Jeong Rae KIM ; Kwang Hyun CHO ; Tae Jin KIM ; Kyeong Cheon JUNG ; Seong Hoe PARK
Experimental & Molecular Medicine 2015;47(3):e154-
Analysis of the T-cell receptor (TCR) repertoire of innate CD4+ T cells selected by major histocompatibility complex (MHC) class II-dependent thymocyte-thymocyte (T-T) interaction (T-T CD4+ T cells) is essential for predicting the characteristics of the antigens that bind to these T cells and for distinguishing T-T CD4+ T cells from other types of innate T cells. Using the TCRmini Tg mouse model, we show that the repertoire of TCRalpha chains in T-T CD4+ T cells was extremely diverse, in contrast to the repertoires previously described for other types of innate T cells. The TCRalpha chain sequences significantly overlapped between T-T CD4+ T cells and conventional CD4+ T cells in the thymus and spleen. However, the diversity of the TCRalpha repertoire of T-T CD4+ T cells seemed to be restricted compared with that of conventional CD4+ T cells. Interestingly, the frequency of the parental OT-II TCRalpha chains was significantly reduced in the process of T-T interaction. This diverse and shifted repertoire in T-T CD4+ T cells has biological relevance in terms of defense against diverse pathogens and a possible regulatory role during peripheral T-T interaction.
Amino Acid Sequence
;
Animals
;
Antigens, Surface/metabolism
;
CD4-Positive T-Lymphocytes/cytology/*immunology/*metabolism
;
Cell Communication
;
Cell Differentiation/genetics/immunology
;
Clonal Evolution
;
Histocompatibility Antigens Class II/*immunology
;
*Immunity, Innate
;
Immunophenotyping
;
Lymphocyte Count
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Peptide Fragments/chemistry
;
Phenotype
;
Receptors, Antigen, T-Cell/chemistry/*genetics/metabolism
;
Receptors, Antigen, T-Cell, alpha-beta/chemistry/genetics
;
Spleen/cytology
;
Thymocytes/cytology/immunology/metabolism
2.Increasing the safety and efficacy of chimeric antigen receptor T cell therapy.
Protein & Cell 2017;8(8):573-589
Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or "on-target/off-tumor" toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal-curing cancer with high safety, high efficacy, and low cost.
Cell Movement
;
immunology
;
Cell Proliferation
;
Gene Expression
;
Genetic Vectors
;
chemistry
;
metabolism
;
Humans
;
Immunotherapy, Adoptive
;
methods
;
Lymphocyte Activation
;
Lymphocytes, Tumor-Infiltrating
;
cytology
;
immunology
;
transplantation
;
Neoplasms
;
genetics
;
immunology
;
pathology
;
therapy
;
Patient Safety
;
Receptors, Antigen, T-Cell
;
chemistry
;
genetics
;
immunology
;
Recombinant Fusion Proteins
;
chemistry
;
genetics
;
immunology
;
Signal Transduction
;
Single-Chain Antibodies
;
chemistry
;
genetics
;
T-Lymphocytes
;
cytology
;
immunology
;
transplantation
;
Treatment Outcome