1.Impact of the beta-1 adrenergic receptor polymorphism on tolerability and efficacy of bisoprolol therapy in Korean heart failure patients: association between beta adrenergic receptor polymorphism and bisoprolol therapy in heart failure (ABBA) study.
Hae Young LEE ; Wook Jin CHUNG ; Hui Kyung JEON ; Hong Seog SEO ; Dong Ju CHOI ; Eun Seok JEON ; Jae Joong KIM ; Joon Han SHIN ; Seok Min KANG ; Sung Cil LIM ; Sang Hong BAEK
The Korean Journal of Internal Medicine 2016;31(2):277-287
BACKGROUND/AIMS: We evaluated the association between coding region variants of adrenergic receptor genes and therapeutic effect in patients with congestive heart failure (CHF). METHODS: One hundred patients with stable CHF (left ventricular ejection fraction [LVEF] < 45%) were enrolled. Enrolled patients started 1.25 mg bisoprolol treatment once daily, then up-titrated to the maximally tolerable dose, at which they were treated for 1 year. RESULTS: Genotypic analysis was carried out, but the results were blinded to the investigators throughout the study period. At position 389 of the beta-1 adrenergic receptor gene (ADRB1), the observed minor Gly allele frequency (Gly389Arg + Gly389Gly) was 0.21, and no deviation from Hardy-Weinberg equilibrium was observed in the genotypic distribution of Arg389Gly (p = 0.75). Heart rate was reduced from 80.8 +/- 14.3 to 70.0 +/- 15.0 beats per minute (p < 0.0001). There was no significant difference in final heart rate across genotypes. However, the Arg389Arg genotype group required significantly more bisoprolol compared to the Gly389X (Gly389Arg + Gly389Gly) group (5.26 +/- 2.62 mg vs. 3.96 +/- 2.05 mg, p = 0.022). There were no significant differences in LVEF changes or remodeling between two groups. Also, changes in exercise capacity and brain natriuretic peptide level were not significant. However, interestingly, there was a two-fold higher rate of readmission (21.2% vs. 10.0%, p = 0.162) and one CHF-related death in the Arg389Arg group. CONCLUSIONS: The ADRB1 Gly389X genotype showed greater response to bisoprolol than the Arg389Arg genotype, suggesting the potential of individually tailoring beta-blocker therapy according to genotype.
Adrenergic beta-1 Receptor Antagonists/adverse effects/*therapeutic use
;
Adult
;
Aged
;
Bisoprolol/adverse effects/*therapeutic use
;
Female
;
Gene Frequency
;
Genotype
;
Heart Failure/diagnosis/*drug therapy/*genetics/physiopathology
;
Heart Rate/drug effects
;
Humans
;
Male
;
Maximum Tolerated Dose
;
Middle Aged
;
Pharmacogenomic Testing
;
Phenotype
;
*Polymorphism, Genetic
;
Precision Medicine
;
Receptors, Adrenergic, beta-1/*drug effects/*genetics
;
Republic of Korea
;
Stroke Volume/drug effects
;
Time Factors
;
Treatment Outcome
;
Ventricular Function, Left/drug effects
;
Ventricular Remodeling/drug effects
2.Overexpression of β(1)-adrenoceptor can not protect rat cardiomyocytes from injury induced by isoprenaline.
Ying WANG ; Feng ZHOU ; Chuan-Ying XU ; Hong SUN
Acta Physiologica Sinica 2010;62(6):505-510
The purpose of this study was to investigate the effect of the overexpression of β(1)-adrenoceptor (β(1)-AR) on the contractile function and cell survival of rat cardiomyocytes injured by isoprenaline (ISO). The rat cardiomyocytes were isolated using the collagenase perfusion method and then transfected with β(1)-AR gene using adenoviruses vector. Four hours after the infection, the rat cardiomyocytes were treated with ISO for 24 h to imitate the high catecholamine levels of chronic heart failure. Western blot was performed to measure the protein expression of β(1)-AR. The percentages of rod cells were measured to test cell survival. Video-based edge-detection system was used to measure the contractile function of the cardiomyocytes. The results indicated that the expression of β(1)-AR in β(1)-AR-transfected cardiomyocytes was significantly increased compared with that in control group (P<0.01). Meanwhile, β(1)-AR transfection also increased β(1)-AR protein levels in ISO-injured cardiomyocytes. The cardiomyocyte survival was significantly decreased in ISO group compared with that in control group. β(1)-AR-transfection alone had no effect on cardiomyocyte survival in β(1)-AR group, but it further decreased cardiomyocyte survival in β(1)-AR+ISO group. Contractile amplitudes of ISO-injured cardiomyocytes were significantly decreased regardless of whether they were transfected with β(1)-AR or not, although β(1)-AR-transfected cardiomyocytes showed significantly increased contractile function compared with control group (P<0.05). These results suggest that the overexpression of β(1)-AR has no significant protective effect on rat cardiomyocytes injured by ISO.
Animals
;
Cell Survival
;
Cells, Cultured
;
Female
;
Heart Failure
;
metabolism
;
Isoproterenol
;
pharmacology
;
Male
;
Myocardial Contraction
;
drug effects
;
Myocytes, Cardiac
;
cytology
;
metabolism
;
pathology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, beta-1
;
genetics
;
metabolism
;
Transfection