1.The expression of α2A-adrenoceptors in the calcium-binding protein immunoreactive interneurons in rat prefrontal cortex.
Xiao-Ting HE ; Jie YU ; Bao-Ming LI ; Xue-Han ZHANG
Acta Physiologica Sinica 2014;66(5):537-544
The α2A adrenoceptors (α2A-ARs) are the most common adrenergic receptor subtype found in the prefrontal cortex (PFC). It is generally accepted that stimulation of postsynaptic α2A-ARs on pyramidal neurons are key to PFC functions, such as working memory. However, the expression of α2A-ARs in interneurons is largely unknown. In the present study using double-labeling immunofluorencence technique, we investigated the expression of α2A-ARs in major types of rat PFC interneurons expressing calcium-binding proteins parvalbumin (PV), calretinin (CR), and calbindin (CB). Our data demonstrated that α2A-ARs are highly expressed in calcium-binding protein immunoreactive interneurons of rat PFC, suggesting that stimulation of α2A-ARs may alter neural networks comprising pyramidal neurons and interneurons, thereby exerting a beneficial effect on PFC cognitive functions. The present study provides the morphological basis for a potential mechanism by which stimulation of α2A-ARs induces cognitive improvement.
Animals
;
Calbindin 2
;
metabolism
;
Calbindins
;
metabolism
;
Interneurons
;
metabolism
;
Parvalbumins
;
metabolism
;
Prefrontal Cortex
;
cytology
;
Rats
;
Receptors, Adrenergic, alpha-2
;
metabolism
2.Noradrenaline modulates the spontaneous firing activities of Purkinje cells via α2-adrenergic receptor in mouse cerebellar cortex.
Xu-Dong ZHANG ; Li-Fei WANG ; Fang-Ling XUAN ; De-Lai QIU ; Bin-Bin ZHANG ; Chun-Ping CHU
Acta Physiologica Sinica 2022;74(3):359-369
Cerebellar Purkinje cells (PCs) exhibit two types of discharge activities: simple spike (SS) and complex spike (CS). Previous studies found that noradrenaline (NA) can inhibit CS and bidirectionally regulate SS, but the enhancement of NA on SS is overwhelmed by the strong inhibition of excitatory molecular layer interneurons. However, the mechanism underlying the effect of NA on SS discharge frequency is not clear. Therefore, in the present study, we examined the mechanism underlying the increasing effect of NA on SS firing of PC in mouse cerebellar cortex in vivo and in cerebellar slice by cell-attached and whole-cell recording technique and pharmacological methods. GABAA receptor was blocked by 100 µmol/L picrotoxin in the whole process. In vivo results showed that NA significantly reduced the number of spikelets of spontaneous CS and enhanced the discharge frequency of SS, but did not affect the discharge frequency of CS. In vitro experiments showed that NA reduced the number of CS spikelets and after hyperpolarization potential (AHP) induced by electrical stimulation, and increased the discharge frequency of SS. NA also reduced the amplitude of excitatory postsynaptic current (EPSC) of parallel fiber (PF)-PC and significantly increased the paired-pulse ratio (PPR). Application of yohimbine, an antagonist of α2-adrenergic receptor (AR), completely eliminated the enhancing effect of NA on SS. The α2-AR agonist, UK14304, also increased the frequency of SS. The β-AR blocker, propranolol, did not affect the effects of NA on PC. These results suggest that in the absence of GABAA receptors, NA could attenuate the synaptic transmission of climbing fiber (CF)-PC via activating α2-AR, inhibit CS activity and reduce AHP, thus enhancing the SS discharge frequency of PC. This result suggests that NA neurons of locus coeruleus can finely regulate PC signal output by regulating CF-PC synaptic transmission.
Action Potentials/physiology*
;
Animals
;
Cerebellar Cortex/metabolism*
;
Cerebellum/metabolism*
;
Mice
;
Norepinephrine/pharmacology*
;
Purkinje Cells/metabolism*
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Receptors, GABA-A/metabolism*
3.Effects of norepinephrine on the proliferation and activation of rat hepatic stellate cells.
Qiao YANG ; Yao-wen ZHANG ; Hong-yan LIU ; Yu-hu SONG ; Wang-xian TANG
Chinese Journal of Hepatology 2008;16(11):844-848
OBJECTIVETo elucidate the relationship between rat hepatic stellate cells (HSC) and sympathetic neurotransmitter norepinephrine (NE) during liver fibrosis.
METHODSUsing immunofluorescence and RT-PCR, the expressions of a1 and b2-adrenoceptors in activated HSC were detected. Methyl thiazolyl tetrazolium (MTT) was adopted to investigate the effect of NE on the proliferation of HSC. Meanwhile, the expressions of collagen-1, transforming growth factor beta (TGFb) and smooth muscle a-actin (a-SMA) in NE-stimulated HSC were detected by RT-PCR. The contents of NE in HSC were determined by high performance liquid chromatography-electrochemical detector (HPLC-ECD).
RESULTSThe a1 and b2-adrenoceptors were expressed in HSC. NE markedly stimulated the proliferation of HSC in a concentration-dependent manner (F = 140.464, P less than 0.05). NE induced the mRNA expressions of collagen-1, TGFb and a-SMA in HSC (t= -4.160; t= -8.763; t= -17.651, P less than 0.05). HSC were synthesizing and releasing NE, especially when stimulated with platelet-derived growth factor (PDGF) (10 ng/ml) (t= -32.907, P less than 0.05).
CONCLUSIONOur findings show that HSC are direct targets of NE and HSC are hepatic neuroglial cells that produce and respond to sympathetic neurotransmitter norepinephrine, suggesting that interrupting sympathetic nervous system signaling may be useful in the treatment of liver fibrosis.
Actins ; metabolism ; Animals ; Cell Proliferation ; drug effects ; Cells, Cultured ; Collagen Type I ; metabolism ; Hepatic Stellate Cells ; drug effects ; metabolism ; Liver Cirrhosis ; Norepinephrine ; pharmacology ; Rats ; Receptors, Adrenergic, alpha-1 ; metabolism ; Receptors, Adrenergic, beta-2 ; metabolism ; Transforming Growth Factor beta ; metabolism
4.Dexmedetomidine improves alcohol withdrawal symptom via activating α2 adrenergic receptor in rat hippocampus.
Ting ZENG ; Hong-Yan ZHANG ; Xin ZHAO ; Yan LIU ; Yan-Zhong GUAN
Acta Physiologica Sinica 2022;74(4):541-547
The purpose of this study was to investigate the effects of α2 adrenergic receptor agonist dexmedetomidine on withdrawal symptoms in alcohol-dependent rats and the underlying mechanism, so as to provide a scientific basis for the treatment of alcohol withdrawal syndrome (AWS). Adult Sprague-Dawley (SD) male rats were orally administered with 6% aqueous alcohol continuously for 28 d to establish alcohol drinking model, and then stopped drinking to induce AWS. Enzyme-linked immunosorbent assay (ELISA) was used to determine the content of norepinephrine (NE) in the locus coeruleus and hippocampus of rats. Dexmedetomidine (5, 10, and 20 μg/kg) was intraperitoneally injected respectively when the rats showed significant AWS. In some rats, α2 adrenergic receptor antagonist yohimbine was injected into hippocampus in advance. The results showed that, compared with the control group, the 6 h withdrawal group exhibited significantly increased AWS score and amount of repeat drinking. The NE contents in hippocampus and locus coeruleus of the last drinking and the 6 h withdrawal groups were significantly increased compared with those of the control group. Dexmedetomidine intervention significantly decreased AWS score and hippocampus NE content in the 6 h withdrawal group, while yohimbine could reverse these effects of dexmedetomidine. These results suggest that dexmedetomidine might improve the withdrawal symptoms in alcohol-dependent rats via activating α2 adrenergic receptor.
Adrenergic alpha-2 Receptor Agonists/therapeutic use*
;
Alcoholism/drug therapy*
;
Animals
;
Dexmedetomidine/therapeutic use*
;
Hippocampus/metabolism*
;
Male
;
Norepinephrine
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, alpha-2/metabolism*
;
Substance Withdrawal Syndrome/drug therapy*
;
Yohimbine/pharmacology*
5.Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes.
Michelle E KIMPLE ; Joshua C NEUMAN ; Amelia K LINNEMANN ; Patrick J CASEY
Experimental & Molecular Medicine 2014;46(6):e102-
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Animals
;
Diabetes Mellitus, Type 2/drug therapy/*metabolism
;
GTP-Binding Protein alpha Subunits/genetics/*metabolism
;
Humans
;
Insulin-Secreting Cells/metabolism
;
Obesity/drug therapy/*metabolism
;
Receptor, Melatonin, MT2/genetics/*metabolism
;
Receptors, Adrenergic, alpha-1/genetics/*metabolism
;
Receptors, Prostaglandin/genetics/*metabolism
6.Dexmedetomidine Promotes Angiogenesis and Vasculogenic Mimicry in Human Hepatocellular Carcinoma through α 2-AR/HIF-1α/VEGFA Pathway.
Tao FANG ; Li LIN ; Zhi Jian YE ; Lian FANG ; Shuai SHI ; Ke Da YU ; Hui Hui MIAO ; Tian Zuo LI
Biomedical and Environmental Sciences 2022;35(10):931-942
OBJECTIVE:
Dexmedetomidine (DEX), the most specific α 2-adrenergic receptor agonist widely used for its sedative and analgesic properties, has been reported to upregulate HIF-1α expression to protect hypoxic and ischemic tissues. However, it is largely unclear whether DEX can also upregulate Hypoxia-inducible factor-1 alpha (HIF-1α) expression and its downstream vascular endothelial growth factor-A (VEGFA) in cancer tissues with oxygen-deficient tumor microenvironment.
METHODS:
We used SMMC-7721 cells, MHCC97-H cells, and a mouse model of orthotopic hepatic carcinoma to explore the effect of DEX on angiogenesis and vasculogenic mimicry (VM) and its mechanism. Under normoxic (20% O 2) and hypoxic (1% O 2) conditions, DEX was used to intervene cells, and yohimbine was used to rescue them.
RESULTS:
The results showed that DEX promoted angiogenesis and VM in human liver cancer cells within a certain dose range, and the addition of yohimbine inhibited this effect. DEX could activate HIF-1α/VEGFA pathway, which was further verified by silencing HIF-1α. Consistently, in vivo results also showed that DEX can up-regulate HIF-1α/VEGFA expression, and enhance the number of VM channels and microvessel density (MVD).
CONCLUSION
We believe that HIF-1α/VEGFA might be an important signaling pathway by which DEX promotes angiogenesis and VM formation in human hepatocellular carcinoma, whereas α 2-adrenergic receptor mediation might be the critical mechanisms.
Animals
;
Humans
;
Mice
;
Adrenergic alpha-2 Receptor Agonists/pharmacology*
;
Carcinoma, Hepatocellular
;
Cardiovascular Physiological Phenomena
;
Dexmedetomidine/pharmacology*
;
Hypoxia
;
Liver Neoplasms/drug therapy*
;
Oxygen
;
Tumor Microenvironment
;
Vascular Endothelial Growth Factor A/genetics*
;
Receptors, Adrenergic, alpha-2/metabolism*
7.Yohimbine protects against endotoxin-induced acute lung injury by blockade of alpha 2A adrenergic receptor in rats.
Ying LIN ; Xi ZHU ; Wan-Zhen YAO ; Yan-Lin YANG ; La-Ta A ; Li CHEN
Chinese Medical Journal 2011;124(7):1069-1074
BACKGROUNDAlpha 2A adrenergic receptor (AR) is a subtype of α2 AR belonging to G protein-coupled receptors, and exerts a variety of biological effects. Recent studies have demonstrated that the α2A AR activation was closely related with inflammatory reaction. The present study aimed to investigate the influence of α2A AR antagonist, yohimbine, on the severity of endotoxin-induced acute lung injury in rats.
METHODSA total of 72 male Sprague-Dawley rats were randomly divided into three groups: control group, lipopolysaccharide (LPS) group and LPS + yohimbine group. Rats were intratracheally administrated with normal saline or LPS (300 µg), and the rats in the LPS + yohimbine group were treated with additional yohimbine (2 mg/kg, i.p) soon after LPS administration. Six, 24 and 48 hours after treatment, arterial blood gas analysis was carried out, and optical microscopy was performed to evaluate pathological changes in the lung, and lung injury score was assessed. The count of white blood cells in bronchoalveolar lavage fluid (BALF) was determined. The levels of norepinephrine, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in BALF were measured with enzyme-linked immunosorbent assay. Immunocytochemistry was performed for the detection of α2A AR on inflammatory cells in BALF.
RESULTSWhen compared with the control group, the oxygenation index in the LPS group was significantly decreased, and white blood cell count, the lung histopathological scores, levels of norepinephrine and IL-6 as well as α2A AR expression on inflammatory cells in the BALF were dramatically increased at different time points, and the concentrations of TNF-α and IL-1β were also increased except at 48 hours after LPS administration. The oxygenation index decreased while white blood cell count in BALF and the lung histopathological scores were obviously increased in the LPS + yohimbine group. The level of norepinephrine in BALF was increased at each time interval in the LPS + yohimbine group, and so did the levels of TNF-α, IL-1β and IL-6 at 6 and 48 hours after LPS administration respectively. When compared with the LPS group, the oxygenation index, white blood cell count, the lung histopathological scores and the level of IL-6 in the LPS + yohimbine group were significantly improved at each time interval, and the concentrations of TNF-α and IL-1β were also lower at 24 hours of LPS administration (all P < 0.05). Correlation analysis indicated the level of norepinephrine was related to the levels of TNF-α, IL-1β and IL-6 in the BALF and the lung histopathological scores (r = 0.703, r = 0.595, r = 0.487 and r = 0.688, respectively, P < 0.001) and the intensity scores of immunoreactivity to α2A AR on inflammatory cells were also associated with the levels of TNF-α, IL-1β and IL-6 as well as the lung histopathologial scores (r = 0.803, r = 0.978, r = 0.716 and r = 0.808, respectively, P < 0.001).
CONCLUSIONSYohimbine can inhibit TNF-α, IL-1β and IL-6 overproduction and relieve the severity of pulmonary inflammation induced by endotoxin, which is maybe mediated by blockade of α2A AR on inflammatory cells.
Acute Lung Injury ; chemically induced ; drug therapy ; Adrenergic alpha-2 Receptor Antagonists ; therapeutic use ; Animals ; Bronchoalveolar Lavage Fluid ; chemistry ; Enzyme-Linked Immunosorbent Assay ; Immunohistochemistry ; Interleukin-1beta ; metabolism ; Interleukin-6 ; metabolism ; Lipopolysaccharides ; toxicity ; Male ; Norepinephrine ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, alpha-2 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism ; Yohimbine ; therapeutic use
8.Effect of dexmedetomidine hydrochloride on H2O2-induced oxidative stress and inflammatory response in Kupffer cells.
Jinmei SHEN ; Li LI ; Lili JIANG ; Gan FU
Journal of Central South University(Medical Sciences) 2016;41(5):477-481
OBJECTIVE:
To evaluate whether dexmedetomidine hydrochloride, an α(2)-adrenergic receptor agonist, can prevent H(2)O(2)-induced oxidative stress and inflammatory response in Kupffer cells.
METHODS:
H(2)O(2)-induced oxidative damage model of Kupffer cell was established. Kupffer cells were pre-conditioned by dexmedetomidine hydrochloride or Yohimbine for 24 h. MTT colorimetry was used to demonstrate the survival rate of Kupffer cells. The levels of lactate dehydrogenase (LDH), malonaldehyde (MDA) and TNF-α in the culture medium were assessed by corresponding kits.
RESULTS:
Dexmedetomidine hydrochloride protected Kupffer cells from H(2)O(2)-induced oxidative damage, showing an increase in the cell survival rate while a decrease in LDH, MDA and TNF-α release in the culture supernatant. Yohimbine, an α(2)-adrenergic receptor antagonist, completely neutralized the protective effect of Dexmedetomidine hydrochloride on Kupffer cells. Yohimbine itself had no effect on H(2)O(2)-induced oxidative damage and inflammatory response.
CONCLUSION
Dexmedetomidine hydrochloride can prevent H(2)O(2)-induced oxidative stress and inflammatory response in Kupffer cells through activation of α(2)-adrenergic receptors.
Adrenergic alpha-2 Receptor Antagonists
;
pharmacology
;
Cell Survival
;
Cells, Cultured
;
Dexmedetomidine
;
pharmacology
;
Humans
;
Hydrogen Peroxide
;
pharmacology
;
Kupffer Cells
;
cytology
;
drug effects
;
L-Lactate Dehydrogenase
;
metabolism
;
Malondialdehyde
;
metabolism
;
Oxidative Stress
;
drug effects
;
Receptors, Adrenergic, alpha-2
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
;
Yohimbine
;
pharmacology
9.Effect of dexmedetomidine hydrochloride on H2O2-induced oxidative stress in alveolar macrophages.
Lili JIANG ; Zeyou QI ; Li LI ; Jinmei SHEN
Journal of Central South University(Medical Sciences) 2013;38(10):1014-1019
OBJECTIVE:
To evaluate whether dexmedetomidine hydrochloride, an α2-adrenergic receptor agonist, can prevent oxidative damage to alveolar macrophages induced by H2O2.
METHODS:
We used methyl thiazolyl tetrazolium (MTT) colorimetry to test the effect of different concentrations and action time of H2O2 on the survival rate of alveolar macrophages, and then we chose the appropriate H2O2 concentration and action time to build NR8383 cell oxidative damage model. After pre-conditioning of 0.01, 0.10, and 1.00 μmol/L dexmedetomidine hydrochloride for 24 hours, MTT colorimetry was used to demonstrate the survival rate of NR8383 cells damaged by H2O2, and the release of lactate dehydrogenase (LDH) and TNF-α by H2O2-damaged NR8383 cells was detected by corresponding kit.
RESULTS:
At 50-300 μmol/L, H2O2 caused concentration-dependent oxidative damage in the alveolar macrophages, decreased the cell survival rate, and increased LDH and TNF-α release. At 0.01-1.00 μmol/L dexmedetomidine hydrochloride concentration-dependently protected NR8383 cells from oxidative damage induced by H2O2, significantly increased the cell survival rate, decreased LDH and TNF-α release, and this effect of dexmedetomidine hydrochloride was dose-dependent. Yohimbine, an α2 - adrenergic receptor antagonist, completely neutralized the protective effect of dexmedetomidine hydrochloride on NR8383 cells without affecting the oxidative damage of NR8383 cells.
CONCLUSION
Dexmedetomidine hydrochloride can prevent alveolar macrophages from oxidative damage induced by H2O2, which may play a protective role through α2 - adrenergic receptors.
Animals
;
Cell Line
;
Cell Survival
;
Dexmedetomidine
;
pharmacology
;
Hydrogen Peroxide
;
L-Lactate Dehydrogenase
;
metabolism
;
Macrophages, Alveolar
;
drug effects
;
Oxidative Stress
;
Rats
;
Receptors, Adrenergic, alpha-2
;
metabolism
;
Tumor Necrosis Factor-alpha
;
metabolism
10.Differential expression of alpha-adrenoceptor subtypes in rat dorsal root ganglion after chronic constriction injury.
Hong-ju CHENG ; Ke-tao MA ; Li LI ; Lei ZHAO ; Yang WANG ; Jun-qiang SI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(3):322-329
mRNAs of alpha-adrenoceptor (α-AR) subtypes are found in neurons in dorsal root ganglion (DRG) and change after peripheral nerve injury. In this study, the distribution of α-AR subtype proteins was studied in L5 DRG of normal rats and rats with chronic constriction injury of sciatic nerve (CCI). Using immunofluorescence technique, it was found that α1A-, α1B-, and α2A-AR proteins were expressed in large, medium, and small size neurons in normal DRG, and significantly increased in all size neurons 14 days after CCI. α1D- and α2C-AR was also expressed in all size neurons in normal DRG. However, α1D-AR was significantly increased and α2C-AR was decreased in small size neurons 14 days post CCI. α2B-AR neurons were not detectable in normal and CCI DRG. Co-expression of α1A- and α2A-AR in the same neuron was observed in normal DRG and increased post CCI. Collectively, these results indicated that there is distinct distribution of α-AR subtypes in DRG neurons, and the distribution and levels of expression of α-AR subtypes change differently after CCI. The up-regulation of α-AR subtypes in DRG neurons may play an important role in the process of generating and transmitting neuropathic pain.
Animals
;
Cell Size
;
Chronic Disease
;
Constriction, Pathologic
;
Fluorescent Antibody Technique
;
Ganglia, Spinal
;
metabolism
;
pathology
;
Male
;
Microscopy, Confocal
;
Neurons
;
metabolism
;
pathology
;
Pain Measurement
;
methods
;
Pain Threshold
;
Protein Isoforms
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Adrenergic, alpha-1
;
metabolism
;
Receptors, Adrenergic, alpha-2
;
metabolism
;
Sciatic Nerve
;
injuries
;
surgery