1.Cloning of adipor1 and adipor2 genes in Rana dybowskii and its expression pattern upon infection.
Dongmei XU ; Yiming LIU ; Yugang SUN ; Yufen LIU ; Peng LIU ; Wenge ZHAO
Chinese Journal of Biotechnology 2023;39(4):1731-1746
Adiponectin receptor 1 (AdipoR1) and Adiponectin receptor 2 (AdipoR2) can bind to adiponectin (AdipoQ) secreted by adipose tissue to participate in various physiological functions of the body. In order to explore the role of AdipoR1 and AdipoR2 in amphibians infected by Aeromonas hydrophila (Ah), the genes adipor1 and adipor2 of Rana dybowskii were cloned by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed by bioinformatics. The tissue expression difference of adipor1 and adipor2 was analyzed by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR), and an inflammatory model of R. dybowskii infected by Ah was constructed. The histopathological changes were observed by hematoxylin-eosin staining (HE staining); the expression profiles of adipor1 and adipor2 after infection were dynamically detected by qRT-PCR and Western blotting. The results show that AdipoR1 and AdipoR2 are cell membrane proteins with seven transmembrane domains. Phylogenetic tree also shows that AdipoR1 and AdipoR2 cluster with the amphibians in the same branch. qRT-PCR and Western blotting results show that adipor1 and adipor2 were up-regulated at different levels of transcription and translation upon Ah infection, but the response time and level were different. It is speculated that AdipoR1 and AdipoR2 participate in the process of bacterial immune response, providing a basis for further exploring the biological functions of AdipoR1 and AdipoR2 in amphibians.
Animals
;
Receptors, Adiponectin/metabolism*
;
Phylogeny
;
Adiponectin/metabolism*
;
Cloning, Molecular
;
Ranidae/genetics*
3.Changes in the mRNA expression of adiponectin, adiponectin receptors, and leptin in adipose tissue of Wannanhua pigs at different stages of development.
Sheng SHENG ; Jie ZHOU ; Jia ZHANG ; Kang SHAO ; Xiao-Xue WU ; Wei-Xin LI ; Zong-Jun YIN
Chinese Journal of Applied Physiology 2012;28(4):352-355
OBJECTIVETo explore the changes in the mRNA expression of adiponectin (Adp), adiponectin receptors(AdpR), and leptin in different adipose tissues of Wannanhua pigs at different stages of development, and their sexual dimorphism.
METHODSFive Wannanhua boars and five Wannanhua gilts were sampled at birth, 30, 45, 90, and 180 days of age respectively. The delta delta Ct relative quantification real-time PCR was used to detect the transcription levels of Adp, AdpR1, AdpR2, and leptin mRNAs in subcutaneous (SC) and perirenal (PR) adipose tissues, and beta-actin were used as internal standards.
RESULTSThe expression level of Adp, AdpR1, AdpR2, and leptin mRNA in SC and PR adipose tissue were changed with age significantly (P < 0.01). In general, Adp mRNA expression in SC adipose tissue was significantly lower than that in PR adipose tissue (P < 0.05), while AdpR1, AdpR2, and leptin mRNA expression in SC adipose tissue were significantly higher than those in PR adipose tissue (P < 0.05 or P < 0.01). Although the sexual dimorphism were found in apart genes or apart days of age, Adp, AdpR1, AdpR2, and leptin mRNA expression both in SC adipose tissue and PR adipose tissue had no significant differences between Wannanhua gilts and boars in general. Significant positive correlation was found between Adp and AdpR1, AdpR2 (P < 0.05 or P < 0.01), and significant negative correlation was found between Adp and leptin (P < 0.05) in SC adipose tissue and PR adipose tissue respectively (P < 0.05).
CONCLUSIONThe expression of Adp, AdpR1, AdpR2, and leptin mRNA in adipose tissue of Wannanhua pigs followed specific developmental patterns and tissue specificity. Adp correlated with its receptors.
Actins ; metabolism ; Adiponectin ; metabolism ; Adipose Tissue ; growth & development ; metabolism ; Animals ; Female ; Leptin ; metabolism ; Male ; RNA, Messenger ; genetics ; Receptors, Adiponectin ; metabolism ; Swine
4.Effect of adiponectin on human osteoblast differentiation.
Li-juan GUO ; Hui XIE ; Er-yuan LIAO
Journal of Central South University(Medical Sciences) 2008;33(8):731-736
OBJECTIVE:
To investigate the effect of adiponectin on the osteoblast differentiation and its signal transduction.
METHODS:
Adipopnectin receptor (AdipoR) was detected by immunoblot analysis. Alkaline phosphatase (ALP) activity was measured by enzyme-linked immunosorbent assay. Osteocalcin was measured by a specific radioimmunoassay kit, and the extent of mineralized matrix was determined. RNA interference was used to down-regulate the expression of AdipoR1 in human osteoblasts, and the effect of adiponectin on osteoblast differentiation was investigated.
RESULTS:
Only AdipoR1 protein was detected in human osteoblasts. Adiponectin could promote osteoblast differentiation, and result in a dose-dependent increase in ALP activity, osteocalcin secretion, and an increase in mineralized nodules. Suppression of AdipoR1 with siRNA could abolish the adiponectin induced ALP expression. Adiponectin could induce the activation of p38 and JNK, but not ERK1/2 in osteoblasts, and the pretreatment of osteoblasts with the p38 inhibitor (SB203580) could block the adiponectin-induced ALP activity.
CONCLUSION
Adiponectin can induce human osteoblast differentiation via AdipoR1/p38 pathway.
Adiponectin
;
pharmacology
;
Alkaline Phosphatase
;
metabolism
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Humans
;
Osteoblasts
;
cytology
;
metabolism
;
Osteocalcin
;
analysis
;
RNA, Small Interfering
;
genetics
;
Receptors, Adiponectin
;
biosynthesis
;
Signal Transduction
5.Comparison of two types of cell cultures for preparation of sTNFRII-gAD fusion protein.
Shigao HUANG ; Yuting YIN ; Chunhui XIONG ; Caihong WANG ; Jianxin LÜ ; Jimin GAO
Chinese Journal of Biotechnology 2013;29(1):115-118
In this study we used two types of cell cultures, i.e., anchorage-dependent basket and full suspension batch cultures of sTNFRII-gAD-expressing CHO cells in the CelliGen 310 bioreactor (7.5 L) to compare their yields in order to optimize the culturing conditions for efficient expression of sTNFRII-gAD fusion protein consisting of soluble tumor necrosis factor receptor II and globular domain of adiponectin. The anchorage-dependent basket culture was performed in 4L 10% serum-containing medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 3 days, and then switched to 4 L serum-free LK021 medium to continue the culture for 4 days. The full suspension batch culture was carried out in the 4 L serum-free LK021 medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 7 days. The culturing conditions were monitored in real-time to maintain pH and dissolved oxygen stability through the whole process. The supernatants were collected by centrifuge, and the protein was concentrated through Pellicon flow ultrafiltration system and then purified by DEAE anion exchange. The results showed that the yields of sTNFRII-gAD fusion protein were 8.0 mg/L with 95% purity and 7.5 mg/L with 98% purity in the anchorage-dependent basket and the full suspension batch cultures, respectively. The study provided the framework for the pilot production of sTNFRII-gAD fusion protein.
Adiponectin
;
biosynthesis
;
genetics
;
Animals
;
Bioreactors
;
CHO Cells
;
Cell Culture Techniques
;
methods
;
Cricetinae
;
Cricetulus
;
Receptors, Tumor Necrosis Factor, Type II
;
biosynthesis
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
6.Correlation of polymorphisms of adiponectin receptor 2 gene +33371Gln/Arg, cytochrome P4502E1 gene Rsa I and smoking with nonalcoholic fatty liver disease.
Journal of Southern Medical University 2014;34(10):1481-1487
OBJECTIVETo investigate the correlation of the polymorphisms of adiponectin receptor 2 (AdipoR2) gene +33371Gln/;Arg and cytochromes P4502E1 gene Rsa I (CYP2E1-Rsa I) as well as smoking with nonalcoholic fatty liver disease (NAFLD).
METHODSThe polymorphisms of AdipoR2 gene +33371Gln/Arg and CYP2E1-Rsa I were analyzed with PCR technique in peripheral blood leukocytes from 750 NAFLD cases and 750 healthy subjects.
RESULTSThe frequencies of AdipoR2 gene +33371Gln/Arg (A/A) and CYP2E1-Rsa I (c2/c2 ) were 39.20% and 71.73% in NAFLD cases, respectively, significantly higher than those in healthy subjects (21.07% and 43.07%, respectively, P<0.01). The risk of NAFLD increased significantly in subjects carrying +33371Gln/Arg (A/A) (OR=2.4156, 95% CI=1.8164-4.0725) and CYP2E1-Rsa I (c2/c2) (OR=3.3547, 95% CI=1.9182-4.5057). Combined analysis of the polymorphisms showed that the percentage of +33371Gln/Arg (A/A)/CYP2E1-Rsa I (c2/c2) was 32. 67% in NAFLD cases, significantly higher than that in the healthy subjects (6.40%, P<0.01), and subjects carrying both +33371Gln/Arg (A/A) and CYP2E1-Rsa I (c2/c2) had a high risk of NAFLD (OR=9.9264, 95% CI=4.2928-12.4241). The smoking rate was significantly higher in the case group than in the control group (OR=2.5919, 95% CI=1.4194-4. 9527, P<0.01), and statistical analysis suggested an interaction between smoking and +33371Gln/Arg (A/A)/CYP2E1-Rsa I (c2/c2) to increase the risk of NAFLD (OR=34.6764, 95% CI=18.9076-61.5825).
CONCLUSION+33371Gln/Arg (A/A), CYP2E1-Rsa I (c2/c2 ) and smoking are risk factors for NAFLD and coordinately contribute to the occurrence of NAFLD.
Alleles ; Case-Control Studies ; Cytochrome P-450 CYP2E1 ; genetics ; Humans ; Non-alcoholic Fatty Liver Disease ; genetics ; Polymorphism, Genetic ; Receptors, Adiponectin ; genetics ; Risk Factors ; Smoking
7.Adiponectin receptor 1 mediates the difference in adiponectin- induced prostaglandin E2 production in rheumatoid arthritis and osteoarthritis synovial fibroblasts.
Wei ZUO ; Zhi-Hong WU ; Nan WU ; Yuan-Hui DUAN ; Ju-Tai WU ; Hai WANG ; Gui-Xing QIU
Chinese Medical Journal 2011;124(23):3919-3924
BACKGROUNDThe synovial fluid concentrations of adiponectin are significantly higher in patients with rheumatoid arthritis (RA) than in patients with osteoarthritis (OA). Accumulating evidence suggests that adiponectin may be an inducer of inflammation in arthritis, but the mechanism remains unclear. The objectives of this study were to compare the expression levels of adiponectin receptors in rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF), evaluate the roles of adiponectin receptors in adiponectin-induced prostaglandin E(2) (PGE(2)) production, and then investigate the effects of a nonsteroidal anti-inflammatory drug (NSAID) and a cyclooxygenase (COX)-2-selective inhibitor on adiponectin-induced PGE(2) release.
METHODSThe expressions of adiponectin receptor 1 (AdipoR1) and AdipoR2 mRNA and protein in synovial fibroblasts from seven patients with RA and eight patients with OA undergoing total knee replacement were evaluated by real-time polymerase chain reaction, immunofluorescence microscopy and Western blotting analysis. Adiponectin-induced PGE(2) production was detected by enzyme-linked immunosorbent assay. RNA interference against the AdipoR1 and AdipoR2 genes was performed to investigate the effects of the adiponectin receptors on adiponectin-induced PGE(2) production in both RASF and OASF.
RESULTSAdipoR1 and AdipoR2 mRNA and protein were expressed by both RASF and OASF. Compared with OASF, RASF exhibited higher levels of AdipoR1, but there was no significant difference for AdipoR2. Adiponectin induced the production of PGE(2) by the synovial fibroblasts in a concentration-dependent manner, and this was more obvious in RASF. RNA interference showed that the difference may be mediated by the diverse distribution of AdipoR1. The adiponectin-induced PGE(2) production was efficiently relieved by the NSAID and COX-2-selective inhibitor.
CONCLUSIONThe present findings suggest that AdipoR1 may mediate the difference in adiponectin-induced PGE(2) production in RASF and OASF.
Adiponectin ; pharmacology ; Arthritis, Rheumatoid ; metabolism ; Blotting, Western ; Cells, Cultured ; Dinoprostone ; metabolism ; Female ; Fibroblasts ; drug effects ; metabolism ; Humans ; Immunoassay ; Male ; Microscopy, Fluorescence ; Middle Aged ; Osteoarthritis ; metabolism ; RNA, Small Interfering ; Real-Time Polymerase Chain Reaction ; Receptors, Adiponectin ; genetics ; metabolism ; Synovial Membrane ; cytology
8.Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system.
Yue LU ; Dan LIU ; Xiaoren ZHANG ; Xuerong LIU ; Wei SHEN ; Gang ZHENG ; Yunfan LIU ; Xiaoyan DONG ; Xiaobing WU ; Jimin GAO
Chinese Journal of Biotechnology 2011;27(8):1239-1246
We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.
Adenoviridae
;
genetics
;
metabolism
;
Adiponectin
;
biosynthesis
;
genetics
;
Animals
;
Cell Line
;
Genetic Vectors
;
genetics
;
Green Fluorescent Proteins
;
genetics
;
metabolism
;
Humans
;
Receptors, Tumor Necrosis Factor, Type II
;
biosynthesis
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
9.Peroxisome Proliferator-Activated Receptor-Gamma Expression in the Lung Tissue of Obese Rats.
Su Jin HWANG ; Jung Ho KIM ; Jae Won SHIM ; Duk Soo KIM ; Hye Lim JUNG ; Moon Soo PARK ; Won Young LEE ; Se Yeon KIM ; Jung Yeon SHIM
Yonsei Medical Journal 2011;52(3):495-501
PURPOSE: Obesity is a risk factor for asthma and type II diabetes. Peroxisome proliferator-activated receptor (PPAR)-gamma has been suggested to regulate inflammatory responses in diabetes and asthma. We investigated whether PPAR-alpha, PPAR-gamma, adiponectin receptors (AdipoR1, AdipoR2), leptin, and tumor necrosis factor (TNF)-alpha are expressed in rat lung tissues and whether the expression differs between obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long Evans Tokushima Otsuka (LETO) rats. MATERIALS AND METHODS: Obese and lean rats were given with a high fat diet or a 30% restricted diet for 32 weeks, and their blood glucose levels and weights were monitored. After 32 weeks, mRNA levels of PPAR-alpha, PPAR-gamma, AdipoR1, AdipoR2, leptin, and TNF-alpha in lung tissues were measured using real time PCR. RESULTS: PPAR-alpha, PPAR-gamma, AdipoR1, AdipoR2, leptin, and TNF-alpha were expressed in both obese and lean rat lung tissues. Increased serum glucose levels on intraperitoneal glucose tolerance testing and a higher weight gain at 32 weeks were observed in OLETF control rats compared to OLETF diet restricted rats. PPAR-gamma expression was markedly elevated in obese control and diet restricted rats compared to lean rats, although PPAR-gamma expression in obese rats was not affected by diet restriction. Leptin was highly expressed in OLETF rats compared to LETO rats. TNF-alpha expression was enhanced in OLETF control rats compared LETO diet restricted rats, and decreased by diet restriction. PPAR-alpha, AdipoR1, and AdipoR2 expression were not significantly different between obese and lean rats. CONCLUSION: PPAR-gamma was highly expressed in the lung tissues of obese rats and may be a novel treatment target for regulating lung inflammation associated with obesity.
Animals
;
Body Weight
;
Glucose Tolerance Test
;
Leptin/genetics/metabolism
;
Lung/*metabolism
;
Male
;
Obesity/genetics/*metabolism
;
PPAR gamma/genetics/*metabolism
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Long-Evans
;
Receptors, Adiponectin/genetics/metabolism
;
Tumor Necrosis Factor-alpha/genetics/metabolism
10.Eukaryotic expression and bioactivity determination of the fusion protein sTNFRII-gAD consisting of soluble tumor necrosis factor receptor II and globular domain of adiponectin.
Suyun CHEN ; Qiushan HE ; Xiaoyan DONG ; Xiaobing WU ; Jimin GAO
Chinese Journal of Biotechnology 2010;26(2):207-215
In order to get soluble TNF receptor (sTNFR) II with good neutralizing activity against TNFalpha, we constructed the fusion gene sTNFRII-gAD, which encoded human sTNFR II and the globular domain of adiponectin (gAD), and then expressed it in mammalian cells and analyzed its anti-TNFalpha activity. First, sTNFRII cDNA was obtained by RT-PCR from the total RNA of human peripheral blood lymphocytes, and fused in frame with gAD gene. Then, the fusion gene sTNFRII-gAD was cloned into the expression vector pAAV2neo to result in the plasmid pAAV2neo-sTNFRII-gAD. By immunofluorescent staining with monoclonal antibody either against TNFRII or against adiponectin, we demonstrated that the pAAV2neo-s7NFRII-gAD-transiently-transfected BHK-21S cells were positive. To obtain G418-resistant BHK-21S/pAAV2neo-sTNFRII-gAD cells, we cultured the transfected BHK-21S cells above in 10% FBS containing DMEM media with 800 microg/mL G418 for 15 days, and changed the serum-containing culture media to a serum-free chemically defined media so as to change the cells culturing style from adhesion to suspension. 24 hours later, we harvested the supernatant of the culture for sTNFRII-gAD fusion protein characterization and anti-TNFalpha activity analysis. With monoclonal antibody either against TNFRII or against adiponectin, the Western blotting analysis showed that the sTNFRII-gAD fusion protein was expressed and existed as monomer, trimer and multimer forms in the supernatant. The bioactivity assay demonstrated that the sTNFRII-gAD fusion protein had the ability to neutralize TNFalpha so as to inhibit the cytotoxicity of TNFalpha on L929 cells. Put together, this study has laid the groundwork for large-scale preparation of sTNFRII-gAD fusion protein.
Adiponectin
;
biosynthesis
;
genetics
;
Animals
;
Cells, Cultured
;
Cricetinae
;
Humans
;
Protein Structure, Tertiary
;
genetics
;
Receptors, Tumor Necrosis Factor, Type II
;
biosynthesis
;
genetics
;
Recombinant Fusion Proteins
;
biosynthesis
;
genetics
;
pharmacology
;
Solubility
;
Tumor Necrosis Factor-alpha
;
antagonists & inhibitors