1.LRRK2 enhances Nod1/2-mediated inflammatory cytokine production by promoting Rip2 phosphorylation.
Protein & Cell 2017;8(1):55-66
The innate immune system is critical for clearing infection, and is tightly regulated to avert excessive tissue damage. Nod1/2-Rip2 signaling, which is essential for initiating the innate immune response to bacterial infection and ER stress, is subject to many regulatory mechanisms. In this study, we found that LRRK2, encoded by a gene implicated in Crohn's disease, leprosy and familial Parkinson's disease, modulates the strength of Nod1/2-Rip2 signaling by enhancing Rip2 phosphorylation. LRRK2 deficiency markedly reduces cytokine production in macrophages upon Nod2 activation by muramyl dipeptide (MDP), Nod1 activation by D-gamma-Glu-meso-diaminopimelic acid (iE-DAP) or ER stress. Our biochemical study shows that the presence of LRRK2 is necessary for optimal phosphorylation of Rip2 upon Nod2 activation. Therefore, this study reveals that LRRK2 is a new positive regulator of Rip2 and promotes inflammatory cytokine induction through the Nod1/2-Rip2 pathway.
Animals
;
Cytokines
;
genetics
;
immunology
;
HEK293 Cells
;
Humans
;
Immunity, Innate
;
genetics
;
Inflammation
;
genetics
;
immunology
;
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2
;
genetics
;
immunology
;
Mice
;
Mice, Knockout
;
Nod1 Signaling Adaptor Protein
;
genetics
;
immunology
;
Nod2 Signaling Adaptor Protein
;
genetics
;
immunology
;
Phosphorylation
;
genetics
;
immunology
;
Receptor-Interacting Protein Serine-Threonine Kinase 2
;
genetics
;
immunology
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
genetics
;
immunology
;
Signal Transduction
;
genetics
;
immunology
2.Progress in study on the final executor of necroptosis MLKL and its inhibitors.
Journal of Central South University(Medical Sciences) 2023;48(2):242-251
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Protein Kinases/metabolism*
;
Necroptosis/physiology*
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
Signal Transduction
;
Pyroptosis
;
Apoptosis
3.Programmed necrosis: a new target for ischemia reperfusion injury.
Xiaojing LI ; Yingzi MING ; Ying NIU ; Qianwen LIU ; Qifa YE
Journal of Central South University(Medical Sciences) 2016;41(7):765-770
Recent years, the researchers have found a new type of cell death, referred to programmed necrosis or necroptosis, which involves the death receptor and the ligand binds and is initiated under the inhibition of apoptosis pathway. Programmed necrosis possesses the morphological features of typical necrosis accompanied by inflammation. The receptor interacting protein kinase 1/3(RIPK1/3) can be inhibited by the specific inhibitors, such as necrostatin-1. RIPK1/3 could regulate programmed necrosis and play a key role in the process. The significance of programmed necrosis in ischemia-reperfusion injury (IRI) has been attracted great attention at present. Simultaneously, a series of studies have found it also involves in the IRI of heart, kidney, brain and retina.
Apoptosis
;
Humans
;
Imidazoles
;
Indoles
;
Inflammation
;
Necrosis
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
Reperfusion Injury
4.Inhibition of TAK1 aggravates airway inflammation by increasing RIPK1 activity and promoting macrophage death in a mouse model of toluene diisocyanate-induced asthma.
Shu Luan YANG ; Wen Qu ZHAO ; Xian Ru PENG ; Zi Han LAN ; Jun Wen HUANG ; Hui Shan HAN ; Ying CHEN ; Shao Xi CAI ; Hai Jin ZHAO
Journal of Southern Medical University 2022;42(2):181-189
OBJECTIVE:
To explore the effect of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) on toluene diisocyanate (TDI)-induced allergic airway inflammation in mice.
METHODS:
Thirty-two mice were randomly divided into AOO group, AOO+5Z-7-Oxozeaenol group, TDI group, and TDI+5Z-7-Oxozeaenol group. Another 32 mice were randomly divided into AOO group, TDI group, TDI +5Z-7-Oxozeaenol group, and TDI +5Z-7-Oxozeaenol + Necrostatin-1 group. TAK1 inhibitor (5Z-7-Oxozeaenol, 5 mg/kg) and/or RIPK1 inhibitor (Necrostatin-1, 5 mg/kg) were used before each challenge. Airway responsiveness, airway inflammation and airway remodeling were assessed after the treatments. We also examined the effect of TDI-human serum albumin (TDI-HSA) conjugate combined with TAK1 inhibitor on the viability of mouse mononuclear macrophages (RAW264.7) using CCK8 assay. The expressions of TAK1, mitogen-activated protein kinase (MAPK) and receptor interacting serine/threonine protease 1 (RIPK1) signal pathway in the treated cells were detected with Western blotting. The effects of RIPK1 inhibitor on the viability of RAW264.7 cells and airway inflammation of the mouse models of TDI-induced asthma were evaluated.
RESULTS:
TAK1 inhibitor aggravated TDI-induced airway inflammation, airway hyper responsiveness and airway remodeling in the mouse models (P < 0.05). Treatment with TAK1 inhibitor significantly decreased the viability of RAW264.7 cells, which was further decreased by co-treatment with TDI-HSA (P < 0.05). TAK1 inhibitor significantly decreased the level of TAK1 phosphorylation and activation of MAPK signal pathway induced by TDI-HSA (P < 0.05). Co-treatment with TAK1 inhibitor and TDI-HSA obviously increased the level of RIPK1 phosphorylation and caused persistent activation of caspase 8 (P < 0.05). RIPK1 inhibitor significantly inhibited the reduction of cell viability caused by TAK1 inhibitor and TDI-HSA (P < 0.05) and alleviated the aggravation of airway inflammation induced by TAK1 inhibitors in TDI-induced mouse models (P < 0.05).
CONCLUSION
Inhibition of TAK1 aggravates TDI-induced airway inflammation and hyperresponsiveness and may increase the death of macrophages by enhancing the activity of RIPK1 and causing persistent activation of caspase 8.
Animals
;
Asthma/chemically induced*
;
Inflammation
;
Macrophages
;
Mice
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
Respiratory System
;
Toluene 2,4-Diisocyanate/adverse effects*
5.Effects of Inhibiting Necroptosis on H9c2 Cardiomyocytes Injury Induced by Hypoxia/Reoxygenation.
Lihui LU ; Mingyue ZHAO ; Siyuan WU ; Wenchao WU ; Hua FU ; Xiaojing LIU
Journal of Biomedical Engineering 2015;32(2):393-399
The aim of this study is to construct specific shRNA expressing plasmids, and to observe their effects on H9c2 cardiomyocytes injury induced by hypoxia/reoxygenation (H/R). RIPK1 and RIPK3 are the key kinases mediating the process of necroptosis. Using recombinant DNA technology, we inserted the synthetic shRNA into pSUPER vector to construct RIPK1-shRNA or RIPK3-shRNA plasmid respectively. We transfected H9c2 cardiomyocytes with the two shRNA plasmids respectively, before we treated them with H/R stimulation. Then, we measured the relevant genes and proteins by real-time PCR and Western blot. Meanwhile,we detected the markers of necroptosis and cardiomyocytes injury. The results showed that inhibition of ripk1 or ripk3 gene expression by its specific shRNA might protect the cardiomyocytes injury induced by H/R stimulation.
Animals
;
Apoptosis
;
Cell Hypoxia
;
Cell Line
;
Gene Expression
;
Myocytes, Cardiac
;
pathology
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
Rats
;
Real-Time Polymerase Chain Reaction
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
genetics
;
metabolism
;
Transfection
6.Preliminary Study of Necroptosis in Cardiac Hypertrophy Induced by Pressure Overload.
Mingyue ZHAO ; Yupei QIN ; Lihui LU ; Xiaoju TANG ; Wenchao WU ; Hua FU ; Xiaojing LIU
Journal of Biomedical Engineering 2015;32(3):618-623
The aim of this study was to observe whether necroptosis is involved in the process of cardiac hypertrophy induced by pressure overload. SD rats underwent transverse abdominal aortic constriction (TAC) operation for establishing cardiac hypertrophy model. The structure and function of the left ventricle of rats were evaluated via echocardiography, left ventricular mass index, the expression of markers of cardiac hypertrophy and histological detection. Real-time PCR and Western blot were used to measure the gene and protein expression of receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3, the necroptosis markers) respectively. Four weeks after TAC operation, rat model for cardiac hypertrophy was established. The experimental data showed that the gene and protein expressions of RIPK1 and RIPK3 in the rat heart hypertrophic tissues after TAC for 4 weeks were increased significantly compared with those in the sham group. HE staining showed cardiomyocytes injury and hypertrophy in the hearts of TAC rat models. By transmission electron microscope, we observed that mitochondria of cardiomyocytes were damaged seriously in the TAC models. Treatment with losartan used, the selective antagonist of angiotensin II type I receptor could improve the cardiac function of TAC rats. Moreover, losartan treatment decreased the expression of RIPK1 and RIPK3 in heart tissues of TAC rats. The results suggest that necroptosis occurrs in the process of cardiac hypertrophy with pressure overload, and losartan could alleviate the cardiac hypertrophy and inhibit necroptosis.
Animals
;
Apoptosis
;
Cardiomegaly
;
pathology
;
Disease Models, Animal
;
Echocardiography
;
Heart
;
physiopathology
;
Losartan
;
pharmacology
;
Myocytes, Cardiac
;
Pressure
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
metabolism
7.Effect and mechanism of Dahuang Zhechong Pills against testicular aging in rats by inhibiting necroptosis signaling pathway.
Huan LI ; Yue TU ; Yi-Gang WAN ; Geng-Lin MU ; Wei WU ; Jia-Xin CHEN ; Mei-Zi WANG ; Jie WANG ; Yan FU ; Yu-Feng CAI ; Yu WANG ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2022;47(15):4119-4127
To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.
Aging
;
Animals
;
Drugs, Chinese Herbal
;
Male
;
Necroptosis
;
Protein Kinases/genetics*
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology*
;
Serine/pharmacology*
;
Signal Transduction
;
Testis
;
Threonine/pharmacology*
8.Expressions of receptor-interacting protein and caspase-8 in oral squamous cell carcinoma and oral precancerous lesions.
Yong-jian SHI ; Li-jia SHEN ; Cao YIN
Journal of Southern Medical University 2009;29(9):1802-1805
OBJECTIVETo detect the expressions of receptor-interacting protein (RIP) and caspase-8 and investigate their roles in oral squamous cell carcinoma (OSCC) and oral precancerous lesions.
METHODSSABC immunohistochemical methods were used to detect the expressions of RIP and caspase-8 in 22 specimens of OSCC, 14 specimens of oral lichen planus (OLP), 14 specimens of oral leukoplakia (OLK) and 10 specimens of normal oral mucosa (NOM).
RESULTSThe rate of weak or negative expression of RIP in normal mucosa was 50% (5/10). The rates of weak and positive expression of RIP in OLP, OLK and OSCC were 75% (36/50), and the rate of positive and strong expression of RIP was 63.7% (14/22) in OSCC, significantly higher that in the others groups (P<0.05). The rates of weak, positive and strong positive expression of caspase-8 in NOM, OLP, OLK and OSCC were 80% (8/10), 100% (14/14), 85.7% (12/14), and 100% (22/22), respectively.
CONCLUSIONBoth RIP and caspase-8 may play important roles in the occurrence and progression of OSCC and oral precancerous lesions.
Carcinoma, Squamous Cell ; metabolism ; Caspase 8 ; metabolism ; Female ; Humans ; Immunohistochemistry ; Male ; Mouth Neoplasms ; metabolism ; Precancerous Conditions ; metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases ; metabolism
9.Expression and clinical significance of receptor-interacting protein serine-threonine kinases 1 in the nucleus pulposus of patients with lumbar disc herniation.
Mao-Cong WU ; Ling-Ling WANG ; Xin-Chang DENG
China Journal of Orthopaedics and Traumatology 2021;34(4):363-367
OBJECTIVE:
To investigate the expression and clinical significance of receptor interacting protein serine-threonine kinases 1 (RIPK1) in the nucleus pulposus of patients with lumbar disc herniation (LDH).
METHODS:
Nucleus pulposus tissue specimens of 40 patients with LDH patients underwent surgical treatment from January 2016 to January 2018 as the case group, and nucleus pulposus tissue specimens of 30 patients with lumbar spine fracture underwent surgical treatment at the same time as the control group. The expression of RIPK1 mRNA and protein of receptor interaction were detected by polymerase chain reaction (PCR) and Western blot, respectively. The expression of RIPK1 protein in the nucleus pulposus were detected by immunohistochemical staining. The concentrations of RIPK1 and tumor necrosis factor-α (TNF-α) in nucleus pulposus were detected by ELISA method. The relationship between the concentrations of RIPK1, TNF-α in nucleus pulposus and the Pearce grade of LDH patients was analyzed by one-way ANOVA. The correlation between RIPK1 and TNF-α was analyzed by Pearson.
RESULTS:
RIPK1 was weakly positively expressed in nucleus pulposus of control group, and RIPK1 protein was positively or strongly positively expressed in case group. The expression of RIPK1 mRNA in nucleus pulposus of case group was higher than that of control group (
CONCLUSION
The expression levels of RIPK1 mRNA and protein in the intervertebral disc tissues of LDH patients are higher than those of normal intervertebral disc tissues, and increased with the increase of Pearce grade, which may be an important factor involved in LDH inflammatory disease.
Humans
;
Intervertebral Disc/metabolism*
;
Intervertebral Disc Degeneration
;
Intervertebral Disc Displacement/genetics*
;
Nucleus Pulposus
;
Receptor-Interacting Protein Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
10.RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes.
Xiang LI ; Chuan-Qi ZHONG ; Rui WU ; Xiaozheng XU ; Zhang-Hua YANG ; Shaowei CAI ; Xiurong WU ; Xin CHEN ; Zhiyong YIN ; Qingzu HE ; Dianjie LI ; Fei XU ; Yihua YAN ; Hong QI ; Changchuan XIE ; Jianwei SHUAI ; Jiahuai HAN
Protein & Cell 2021;12(11):858-876
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ~1000 molecules/cell (mpc), the cell solely undergoes TRADD-dependent apoptosis. When RIP1 is above ~1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>~46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.
Animals
;
Apoptosis
;
Caspase 8/metabolism*
;
GTPase-Activating Proteins/metabolism*
;
HEK293 Cells
;
Humans
;
Mice
;
Mice, Knockout
;
Necroptosis
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*