1.Progress in study on the final executor of necroptosis MLKL and its inhibitors.
Journal of Central South University(Medical Sciences) 2023;48(2):242-251
Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.
Protein Kinases/metabolism*
;
Necroptosis/physiology*
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
Signal Transduction
;
Pyroptosis
;
Apoptosis
2.Expressions of receptor-interacting protein and caspase-8 in oral squamous cell carcinoma and oral precancerous lesions.
Yong-jian SHI ; Li-jia SHEN ; Cao YIN
Journal of Southern Medical University 2009;29(9):1802-1805
OBJECTIVETo detect the expressions of receptor-interacting protein (RIP) and caspase-8 and investigate their roles in oral squamous cell carcinoma (OSCC) and oral precancerous lesions.
METHODSSABC immunohistochemical methods were used to detect the expressions of RIP and caspase-8 in 22 specimens of OSCC, 14 specimens of oral lichen planus (OLP), 14 specimens of oral leukoplakia (OLK) and 10 specimens of normal oral mucosa (NOM).
RESULTSThe rate of weak or negative expression of RIP in normal mucosa was 50% (5/10). The rates of weak and positive expression of RIP in OLP, OLK and OSCC were 75% (36/50), and the rate of positive and strong expression of RIP was 63.7% (14/22) in OSCC, significantly higher that in the others groups (P<0.05). The rates of weak, positive and strong positive expression of caspase-8 in NOM, OLP, OLK and OSCC were 80% (8/10), 100% (14/14), 85.7% (12/14), and 100% (22/22), respectively.
CONCLUSIONBoth RIP and caspase-8 may play important roles in the occurrence and progression of OSCC and oral precancerous lesions.
Carcinoma, Squamous Cell ; metabolism ; Caspase 8 ; metabolism ; Female ; Humans ; Immunohistochemistry ; Male ; Mouth Neoplasms ; metabolism ; Precancerous Conditions ; metabolism ; Receptor-Interacting Protein Serine-Threonine Kinases ; metabolism
3.RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes.
Xiang LI ; Chuan-Qi ZHONG ; Rui WU ; Xiaozheng XU ; Zhang-Hua YANG ; Shaowei CAI ; Xiurong WU ; Xin CHEN ; Zhiyong YIN ; Qingzu HE ; Dianjie LI ; Fei XU ; Yihua YAN ; Hong QI ; Changchuan XIE ; Jianwei SHUAI ; Jiahuai HAN
Protein & Cell 2021;12(11):858-876
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ~1000 molecules/cell (mpc), the cell solely undergoes TRADD-dependent apoptosis. When RIP1 is above ~1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>~46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.
Animals
;
Apoptosis
;
Caspase 8/metabolism*
;
GTPase-Activating Proteins/metabolism*
;
HEK293 Cells
;
Humans
;
Mice
;
Mice, Knockout
;
Necroptosis
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
4.Effects of Inhibiting Necroptosis on H9c2 Cardiomyocytes Injury Induced by Hypoxia/Reoxygenation.
Lihui LU ; Mingyue ZHAO ; Siyuan WU ; Wenchao WU ; Hua FU ; Xiaojing LIU
Journal of Biomedical Engineering 2015;32(2):393-399
The aim of this study is to construct specific shRNA expressing plasmids, and to observe their effects on H9c2 cardiomyocytes injury induced by hypoxia/reoxygenation (H/R). RIPK1 and RIPK3 are the key kinases mediating the process of necroptosis. Using recombinant DNA technology, we inserted the synthetic shRNA into pSUPER vector to construct RIPK1-shRNA or RIPK3-shRNA plasmid respectively. We transfected H9c2 cardiomyocytes with the two shRNA plasmids respectively, before we treated them with H/R stimulation. Then, we measured the relevant genes and proteins by real-time PCR and Western blot. Meanwhile,we detected the markers of necroptosis and cardiomyocytes injury. The results showed that inhibition of ripk1 or ripk3 gene expression by its specific shRNA might protect the cardiomyocytes injury induced by H/R stimulation.
Animals
;
Apoptosis
;
Cell Hypoxia
;
Cell Line
;
Gene Expression
;
Myocytes, Cardiac
;
pathology
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
RNA, Small Interfering
;
Rats
;
Real-Time Polymerase Chain Reaction
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
genetics
;
metabolism
;
Transfection
5.Preliminary Study of Necroptosis in Cardiac Hypertrophy Induced by Pressure Overload.
Mingyue ZHAO ; Yupei QIN ; Lihui LU ; Xiaoju TANG ; Wenchao WU ; Hua FU ; Xiaojing LIU
Journal of Biomedical Engineering 2015;32(3):618-623
The aim of this study was to observe whether necroptosis is involved in the process of cardiac hypertrophy induced by pressure overload. SD rats underwent transverse abdominal aortic constriction (TAC) operation for establishing cardiac hypertrophy model. The structure and function of the left ventricle of rats were evaluated via echocardiography, left ventricular mass index, the expression of markers of cardiac hypertrophy and histological detection. Real-time PCR and Western blot were used to measure the gene and protein expression of receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3, the necroptosis markers) respectively. Four weeks after TAC operation, rat model for cardiac hypertrophy was established. The experimental data showed that the gene and protein expressions of RIPK1 and RIPK3 in the rat heart hypertrophic tissues after TAC for 4 weeks were increased significantly compared with those in the sham group. HE staining showed cardiomyocytes injury and hypertrophy in the hearts of TAC rat models. By transmission electron microscope, we observed that mitochondria of cardiomyocytes were damaged seriously in the TAC models. Treatment with losartan used, the selective antagonist of angiotensin II type I receptor could improve the cardiac function of TAC rats. Moreover, losartan treatment decreased the expression of RIPK1 and RIPK3 in heart tissues of TAC rats. The results suggest that necroptosis occurrs in the process of cardiac hypertrophy with pressure overload, and losartan could alleviate the cardiac hypertrophy and inhibit necroptosis.
Animals
;
Apoptosis
;
Cardiomegaly
;
pathology
;
Disease Models, Animal
;
Echocardiography
;
Heart
;
physiopathology
;
Losartan
;
pharmacology
;
Myocytes, Cardiac
;
Pressure
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
metabolism
6.Expression and clinical significance of receptor-interacting protein serine-threonine kinases 1 in the nucleus pulposus of patients with lumbar disc herniation.
Mao-Cong WU ; Ling-Ling WANG ; Xin-Chang DENG
China Journal of Orthopaedics and Traumatology 2021;34(4):363-367
OBJECTIVE:
To investigate the expression and clinical significance of receptor interacting protein serine-threonine kinases 1 (RIPK1) in the nucleus pulposus of patients with lumbar disc herniation (LDH).
METHODS:
Nucleus pulposus tissue specimens of 40 patients with LDH patients underwent surgical treatment from January 2016 to January 2018 as the case group, and nucleus pulposus tissue specimens of 30 patients with lumbar spine fracture underwent surgical treatment at the same time as the control group. The expression of RIPK1 mRNA and protein of receptor interaction were detected by polymerase chain reaction (PCR) and Western blot, respectively. The expression of RIPK1 protein in the nucleus pulposus were detected by immunohistochemical staining. The concentrations of RIPK1 and tumor necrosis factor-α (TNF-α) in nucleus pulposus were detected by ELISA method. The relationship between the concentrations of RIPK1, TNF-α in nucleus pulposus and the Pearce grade of LDH patients was analyzed by one-way ANOVA. The correlation between RIPK1 and TNF-α was analyzed by Pearson.
RESULTS:
RIPK1 was weakly positively expressed in nucleus pulposus of control group, and RIPK1 protein was positively or strongly positively expressed in case group. The expression of RIPK1 mRNA in nucleus pulposus of case group was higher than that of control group (
CONCLUSION
The expression levels of RIPK1 mRNA and protein in the intervertebral disc tissues of LDH patients are higher than those of normal intervertebral disc tissues, and increased with the increase of Pearce grade, which may be an important factor involved in LDH inflammatory disease.
Humans
;
Intervertebral Disc/metabolism*
;
Intervertebral Disc Degeneration
;
Intervertebral Disc Displacement/genetics*
;
Nucleus Pulposus
;
Receptor-Interacting Protein Serine-Threonine Kinases/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Effect and mechanism of Dahuang Zhechong Pills against testicular aging in rats by inhibiting necroptosis signaling pathway.
Huan LI ; Yue TU ; Yi-Gang WAN ; Geng-Lin MU ; Wei WU ; Jia-Xin CHEN ; Mei-Zi WANG ; Jie WANG ; Yan FU ; Yu-Feng CAI ; Yu WANG ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2022;47(15):4119-4127
To explore the effect and mechanism of Dahuang Zhechong Pills(DHZCP), a classical prescription, in improving testicular aging(TA) in vivo, the authors randomly divided 24 male rats into four groups: the normal, model, DHZCP and vitamin E(VE) groups. The TA rat model was established by continuous gavage of D-galactose(D-gal). During the experiment, the rats in the DHZCP and VE groups were given DHZCP suspension and VE suspension, respectively by gavage, while those in the normal and model groups were gavaged saline separately every day. After the co-administration of D-gal and various drugs for 60 days, all rats were sacrificed, and their blood and testis were collected. Further, various indexes related to TA and necroptosis of testicular cells in the model rats were examined and investigated, which included the aging phenotype, total testicular weight, testicular index, histopathological features of testis, number of spermatogenic cells, sex hormone level, expression characteristics of reactive oxygen species(ROS) in testis, expression levels and characteristics of cyclins in testis, and protein expression levels of the key molecules in receptor-interacting serine/threonine-protein kinase 1(RIPK1)/receptor-interacting serine/threonine-protein kinase 3(RIPK3)/mixed lineage kinase domain like pseudokinase(MLKL) signaling pathway in each group. The results showed that, for the TA model rats, both DHZCP and VE improved their aging phenotype, total testicular weight, testicular index, pathological features of testis, number of spermatogenic cells, serum testosterone and follicle stimulating hormone levels, expression characteristics of ROS and protein expression levels and characteristics of P21 and P53 in testis. In addition, DHZCP and VE improved the protein expression levels of the key molecules in RIPK1/RIPK3/MLKL signaling pathway in testis of the model rats. Specifically, DHZCP was better than VE in the improvement of RIPK3. In conclusion, in this study, the authors found that DHZCP, similar to VE, ameliorated D-gal-induced TA in model rats in vivo, and its mechanism was related to reducing necroptosis of testicular cells by inhibiting the activation of RIPK1/RIPK3/MLKL signaling pathway. This study provided preliminary pharmacological evidence for the development and application of classical prescriptions in the field of men's health.
Aging
;
Animals
;
Drugs, Chinese Herbal
;
Male
;
Necroptosis
;
Protein Kinases/genetics*
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Receptor-Interacting Protein Serine-Threonine Kinases/pharmacology*
;
Serine/pharmacology*
;
Signal Transduction
;
Testis
;
Threonine/pharmacology*
8.Effects and mechanisms of total flavones of Abelmoschus manihot in inhibiting podocyte necroptosis and renal fibrosis in diabetic kidney disease.
Jia-Xin CHEN ; Qi-Jun FANG ; Yi-Gang WAN ; Ying-Lu LIU ; Yu WANG ; Wei WU ; Yue TU ; Mei-Zi WANG ; Dian-Guang WANG ; Hai-Tao GE
China Journal of Chinese Materia Medica 2023;48(15):4137-4146
Previous studies have shown that high blood glucose-induced chronic microinflammation can cause inflammatory podocyte injury in patients with diabetic kidney disease(DKD). Therein, necroptosis is a new form of podocyte death that is closely associated with renal fibrosis(RF). To explore the effects and mechanisms in vivo of total flavones of Abelmoschus manihot(TFA), an extract from traditional Chinese herbal medicine Abelmoschus manihot for treating kidney diseases, on podocyte necroptosis and RF in DKD, and to further reveal its scientific connotation with multi-pathway and multi-target, the authors randomly divided all rats into four groups: a namely normal group, a model group, a TFA group and a rapamycin(RAP) group. After the modified DKD rat models were successfully established, four group rats were given double-distilled water, TFA suspension and RAP suspension, respectively by gavage every day. At the end of the 4th week of drug treatment, all rats were sacrificed, and the samples of their urine, blood and kidneys were collected. And then, the various indicators related to podocyte necroptosis and RF in the DKD model rats were observed, detected and analyzed, respectively. The results indicated that, general condition, body weight(BW), serum creatinine(Scr), urinary albumin(UAlb), and kidney hypertrophy index(KHI) in these modified DKD model rats were both improved by TFA and RAP. Indicators of RF, including glomerular histomorphological characteristics, fibronectin(FN) and collagen type Ⅰ(collagen Ⅰ) staining extent in glomeruli, as well as the protein expression levels of FN, collagen Ⅰ, transforming growth factor-β1(TGF-β1) and Smad2/3 in the kidneys were improved respectively by TFA and RAP. Podocyte damage, including foot process form and the protein expression levels of podocin and CD2AP in the kidneys was improved by TFA and RAP. In addition, tumor necrosis factor-α(TNF-α)-mediated podocyte necroptosis in the kidneys, including the morphological characteristics of podocyte necroptosis, the extent and levels of the protein expression of TNF-α and phosphorylated mixed lineage kinase domain like pseudokinase(p-MLKL) was improved respectively by TFA and RAP. Among them, RAP had the better effect on p-MLKL. More importantly, the activation of the receptor interacting serine/threonine protein kinase 1(RIPK1)/RIPK3/MLKL signaling axis in the kidneys, including the expression levels of its key signaling molecules, such as phosphorylated receptor interacting serine/threonine protein kinase 1(p-RIPK1), p-RIPK3, p-MLKL and cysteinyl aspartate specific proteinase-8(caspase-8) was improved respectively by TFA and RAP. Among them, the effect of TFA on p-RIPK1 was superior. On the whole, in this study, the authors demonstrated that TFA alleviates podocyte necroptosis and RF in DKD through inhibiting the activation of the TNF-α-mediated RIPK1/RIPK3/MLKL signaling axis in diabetic kidneys. The authors' findings provide new pharmacological evidence to reveal the scientific connotation of TFA in treating RF in DKD in more depth.
Humans
;
Rats
;
Animals
;
Diabetic Nephropathies/drug therapy*
;
Abelmoschus
;
Flavones/pharmacology*
;
Podocytes
;
Tumor Necrosis Factor-alpha/metabolism*
;
Necroptosis
;
Receptor-Interacting Protein Serine-Threonine Kinases/metabolism*
;
Fibrosis
;
Threonine/pharmacology*
;
Collagen/metabolism*
;
Serine/pharmacology*
;
Diabetes Mellitus/drug therapy*
9.New components of the necroptotic pathway.
Zhenru ZHOU ; Victor HAN ; Jiahuai HAN
Protein & Cell 2012;3(11):811-817
Programmed necrosis, also known as necroptosis, has recently drawn great attention. As an important cellular regulation mechanism, knowledge of its signaling components is expanding. Necroptosisis demonstrated to be regulated by the RIP1 and RIP3 kinases, and its pathophysiological importance has been confirmed in a number of disease models. Here we review the new members of this necroptosis pathway, MLKL, PGAM5, Drp1 and DAI, and discuss some of their possible applications according to recent findings.
Animals
;
Carrier Proteins
;
metabolism
;
DNA-Binding Proteins
;
metabolism
;
GTP Phosphohydrolases
;
metabolism
;
Humans
;
Microtubule-Associated Proteins
;
metabolism
;
Mitochondrial Proteins
;
metabolism
;
Necrosis
;
Phosphoprotein Phosphatases
;
Protein Kinases
;
chemistry
;
metabolism
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
Tumor Necrosis Factors
;
metabolism
10.CUEDC2: an emerging key player in inflammation and tumorigenesis.
Protein & Cell 2011;2(9):699-703
CUE domain-containing 2 (CUEDC2) is a protein involved in the regulation of the cell cycle, inflammation, and tumorigenesis and is highly expressed in many types of tumors. CUEDC2 is phosphorylated by Cdk1 during mitosis and promotes the release of anaphase-promoting complex or cyclosome (APC/C) from checkpoint inhibition. CUEDC2 is also known to interact with IkB kinase α (IKKα) and IKKβ and has an inhibitory role in the activation of transcription factor nuclear factor-κB. Moreover, CUEDC2 plays an important role in downregulating the expression of hormone receptors estrogen receptor-α and progesterone receptor, thereby impairing the responsiveness of breast cancer to endocrine therapies. In this review, current knowledge on the multi-functions of CUEDC2 in normal processes and tumorigenesis are discussed and summarized.
Anaphase-Promoting Complex-Cyclosome
;
Breast Neoplasms
;
pathology
;
Carrier Proteins
;
metabolism
;
Cell Cycle Proteins
;
metabolism
;
Cell Transformation, Neoplastic
;
pathology
;
Estrogen Receptor alpha
;
metabolism
;
Female
;
Humans
;
I-kappa B Kinase
;
metabolism
;
Inflammation
;
pathology
;
M Phase Cell Cycle Checkpoints
;
Membrane Proteins
;
metabolism
;
Mitosis
;
NF-kappa B p50 Subunit
;
metabolism
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
Ubiquitin-Protein Ligase Complexes
;
metabolism
;
Ubiquitination