1.Increased atria expression of receptor activity-modifying proteins in heart failure patients.
Yu-fang WANG ; Ji ZHANG ; Jing LI ; Li-qiong LAN ; Zhi-mei YANG ; Shu-ren WANG
Chinese Journal of Medical Genetics 2004;21(4):351-354
OBJECTIVEReceptor activity-modifying proteins (RAMPs) determine the ligand specificity of the calcitonin receptor-like receptor (CRLR); co-expression of RAMP1 and CRLR results in a calcitonin gene related peptide (CGRP) receptor, whereas the association of RAMP2 or RAMP3 with CRLR gives an adrenomedullin(ADM) receptor. As CGRP and ADM may play a beneficial role in heart failure, this study aimed at the question whether RAMPs mRNAs are changed in heart failure.
METHODSSemi-quantitative reverse transcription-PCR (RT-PCR) was used to detect and quantify the mRNAs of RAMP1 and RAMP3 in the atria of heart failing patients.
RESULTSIt was found that the expressions of RAMP1, RAMP2 and RAMP3 mRNAs increased with the worsening of heart function, but the expressions of RAMP1 and RAMP2 mRNA decreased at level IV of heart failure.
CONCLUSIONThe above results demonstrated in the atria of heart failure patients an up-regulation of CGRP receptor by an increase of RAMP1 in association with CRLR and an up-regulation of ADM receptor by an increase of RAMP2 expression in association with CRLR, thus suggesting that CGRP and ADM receptors be playing a functional role in compensating the chronic heart failure in human.
Adult ; Calcitonin Receptor-Like Protein ; Female ; Heart Atria ; metabolism ; Heart Failure ; genetics ; physiopathology ; Humans ; Intracellular Signaling Peptides and Proteins ; genetics ; physiology ; Male ; Membrane Proteins ; genetics ; physiology ; Receptor Activity-Modifying Protein 1 ; Receptor Activity-Modifying Protein 2 ; Receptor Activity-Modifying Protein 3 ; Receptor Activity-Modifying Proteins ; Receptors, Adrenomedullin ; Receptors, Calcitonin ; genetics ; physiology ; Receptors, Calcitonin Gene-Related Peptide ; genetics ; physiology ; Receptors, Peptide ; genetics ; physiology ; Reverse Transcriptase Polymerase Chain Reaction
2.Expression of adrenomedullin and its receptor mRNA in the tissues of normal adrenal medulla and pheochromocytoma.
Dong-Mei LIU ; Zheng-Pei ZENG ; Han-Zhong LI ; Xin-Rong FAN ; Guo-Qiang LIU ; Wei-Gang YAN ; An-Li TONG ; Xin ZHENG
Acta Academiae Medicinae Sinicae 2005;27(4):452-456
OBJECTIVETo investigate the expression of human adrenomedullin (ADM) and its receptor-receptor activity modifying protein 2/calcitonin receptor-like receptor (RAMP2/CRLR) mRNA in the tissues of normal adrenal medulla and pheochromocytoma.
METHODSTotal RNA was extracted from normal adrenal medulla and pheochromocytomas. The expression of ADM and RAMP2/CRLR mRNA were studied by reverse transcription-polymerase chain reaction. The ratios of ADM/GAPDH, RAMP2/ GAPDH, CRLR/GAPDH were used to evaluate the expression levels of ADM, RAMP2 and CRLR mRNA.
RESULTSExpressions of ADM and its receptor- RAMP2/CRLR mRNA were detected in normal adrenal medulla and pheochromocytoma tissues. ADM/GAPDH were 0.48+/-0.09 and 0.75+/-0.24, RAMP2/ GAPDH 0.79+/-0.12 and 1.29+/-0.30, CRLR/GAPDH 0.40+/-0.08 and 0.87+/-0.22 in normal adrenal medulla and pheochromocytomas, respectively (P < 0.05).
CONCLUSIONADM exerts a possible autocrine or paracrine effect in the adrenal. ADM may be involved in the pathogenesis of pheochromocytoma.
Adrenal Gland Neoplasms ; metabolism ; Adrenal Medulla ; metabolism ; Adrenomedullin ; Adult ; Calcitonin Gene-Related Peptide ; biosynthesis ; genetics ; Female ; Humans ; Intracellular Signaling Peptides and Proteins ; genetics ; Male ; Membrane Proteins ; biosynthesis ; genetics ; Middle Aged ; Peptides ; genetics ; metabolism ; Pheochromocytoma ; metabolism ; RNA, Messenger ; biosynthesis ; genetics ; Receptor Activity-Modifying Protein 2 ; Receptor Activity-Modifying Proteins ; Receptors, Adrenomedullin ; Receptors, Calcitonin ; biosynthesis ; genetics ; Receptors, Peptide ; metabolism
3.Effect and mechanism of intermedin in acute rat cardiac ischemic injury.
Qiu-Xiang DU ; Wei YUE ; Ying-Yuan WANG
Journal of Forensic Medicine 2011;27(3):164-168
OBJECTIVE:
To investigate the effect and potential mechanism of intermedin (IMD) in acute cardiac ischemic injury and to provide a new approach for exploring mechanism of sudden cardiac death.
METHODS:
Seventy-two healthy male rats were randomly divided into 3 groups: control, ischemic and the IMD-treated group. The activity of lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) in heart blood were tested by enzyme chemistry method. The mRNA changes of calcitonin receptor-like receptor (CRLR) and receptor activity-modifying proteins (RAMPs) in cardiac were measured by real-time PCR analysis. Myocardial cyclic adenosine monophosphate (cAMP) content was determined by enzyme linked immunosorbent assay (ELISA). Apoptosis related factors Bcl-2 and Bax were detected by immunohistochemistry.
RESULTS:
Comparing with the control group, LDH and MDA activity of ischemic group in heart blood increased and SOD activity decreased. The concentration of cAMP increased in ventricular muscle, Bcl-2 and Bax proteins expression ratio level decreased. The intravenation of IMD decreased the level of increased activity of LDH and MDA, and lessened the level of decreased activity of SOD. The mRNA expression of CRLR and RAMPs obviously increased in ventricular muscle.
CONCLUSION
The protective effect of IMD against myocardial ischemic injury could be caused by decreasing the oxidative stress of ischemia and inhibiting the myocardial apoptosis.
Adrenomedullin/pharmacology*
;
Animals
;
Apoptosis/drug effects*
;
Calcitonin Receptor-Like Protein/metabolism*
;
Cardiotonic Agents/pharmacology*
;
Cyclic AMP/metabolism*
;
Disease Models, Animal
;
L-Lactate Dehydrogenase/metabolism*
;
Male
;
Malondialdehyde/metabolism*
;
Myocardial Ischemia/pathology*
;
Myocardium/pathology*
;
Neuropeptides/pharmacology*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Messenger/metabolism*
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptor Activity-Modifying Proteins/metabolism*
;
Superoxide Dismutase/metabolism*
4.Protective effect of adrenomedullin on hyperoxia-induced lung injury.
Min ZHANG ; Li-Hua CHENG ; Xiao-Tong YIN ; Hao LUO ; Cheng CAI
Chinese Journal of Contemporary Pediatrics 2021;23(12):1282-1288
OBJECTIVES:
To study the role of adrenomedullin (ADM) in hyperoxia-induced lung injury by examining the effect of ADM on the expression of calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein 2 (RAMP2), extracellular signal-regulated kinase (ERK), and protein kinase B (PKB) in human pulmonary microvascular endothelial cells (HPMECs) under different experimental conditions.
METHODS:
HPMECs were randomly divided into an air group and a hyperoxia group (
RESULTS:
Compared with the air group, the hyperoxia group had significant increases in the mRNA and protein expression levels of ADM, CRLR, RAMP2, ERK1/2, and PKB (
CONCLUSIONS
ERK1/2 and PKB may be the downstream targets of the ADM signaling pathway. ADM mediates the ERK/PKB signaling pathway by regulating CRLR/RAMP2 and participates in the protection of hyperoxia-induced lung injury.
Adrenomedullin/genetics*
;
Endothelial Cells
;
Humans
;
Hyperoxia/complications*
;
Lung Injury
;
Receptor Activity-Modifying Proteins
5.Changes of intermedin/adrenomedullin 2 and its receptors in the right ventricle of rats with chronic hypoxic pulmonary hypertension.
Yong-Sheng GONG ; Xiao-Fang FAN ; Xiao-Mai WU ; Liang-Gang HU ; Chao-Shu TANG ; Yong-Zheng PANG ; Yong-Fen QI
Acta Physiologica Sinica 2007;59(2):210-214
The purpose of the present study was to explore the expression changes of intermedin/adrenomedullin 2 (IMD/ADM2), a novel small molecular bioactive peptide, and its receptors, calcitonin receptor-like receptor (CRLR) and receptor activity modifying proteins (RAMP1, RAMP2, RAMP3) in the right ventricle of rats with chronic hypoxia-induced pulmonary hypertension. Twenty male Sprague-Dawley rats were randomly divided into 4-week hypoxia group and normal control group (each n=10). The rats in hypoxia group were placed in an isobaric hypoxic chamber, in which O(2) content was maintained at 9%-11% by delivering N(2), and CO(2) content was maintained at <3% for 4 weeks (8 h/d, 6 d/week). The rats in the control group were housed in room air. The protein levels of IMD/ADM2 and adrenomedullin (ADM) in blood plasma and right ventricular tissue were measured by radioimmunoassay. The mRNA expressions of IMD/ADM2, ADM and their receptors CRLR, RAMP1, RAMP2, RAMP3 in right ventricular tissue were determined by reverse transcription-polymerase chain reaction (RT-PCR). The results showed that the ratio of right ventricle weight to left ventricle plus septum weight [RV/(LV+S)] and mean pulmonary arterial pressure (mPAP) were higher in hypoxia group than those in the control group (all P<0.01), suggesting that the rat model of pulmonary hypertension was successfully established. However, the mean carotid arterial pressure (mCAP) between the two groups had no significant difference. Compared with that in the control group, ADM contents in plasma and right ventricular tissue in hypoxia group increased by 1.26 and 1.68 folds (all P<0.01), respectively. Likewise, IMD/ADM2 contents in blood plasma and right ventricular tissue in hypoxia group increased by 0.90 and 1.19 folds (P<0.01), respectively, compared with that in the control group. The data of RT-PCR showed that mRNA levels of ADM, IMD/ADM2 and RAMP2 in hypoxia group increased by 155.1% (P<0.01), 80.9% (P<0.01) and 52.9% (P<0.05), respectively, compared with those in the control group. There were no significant differences in mRNA expressions of CRLR, RAMP1 and RAMP3 between the two groups (all P>0.05). Taken together, the results show that the level of IMD/ADM2 increases in the rats with chronic hypoxia-induced pulmonary hypertension.
Adrenomedullin
;
metabolism
;
Animals
;
Calcitonin Receptor-Like Protein
;
metabolism
;
Heart Ventricles
;
metabolism
;
Hypertension, Pulmonary
;
etiology
;
metabolism
;
physiopathology
;
Hypoxia
;
complications
;
Male
;
Neuropeptides
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor Activity-Modifying Proteins
;
metabolism
6.Changes in adrenomedullin and receptor activity-modifying protein 2 mRNA in myocardium and vessels during L-NNA-induced hypertension in rats.
Yong-Fen QI ; Yan-Rong SHI ; Ding-Fang BU ; Hong-Feng JIANG ; Lin GAO ; Yong-Zheng PANG ; Chao-Shu TANG
Acta Physiologica Sinica 2002;54(4):337-341
To explore the changes in adrenomedullin (ADM) and receptor activity-modifying protein 2 (RAMP2) mRNA in myocardium and vessels in hypertension, a hypertensive rat model was prepared by administering L-NNA. Contents of ADM in plasma, myocardium and vessels were measured by radioimmunoassay (RIA). The levels of pro-ADM mRNA of myocardium and vessels were determined by competitive quantitative RT-PCR. The results showed that L-NNA induced hypertension and cardiomegaly. The ratio of heart to body weight increased by 35.5% (P<0.01). In hypertensive rats the ir-ADM in plasma, myocardium and vessels was increased by 80%, 72% and 57% (P<0.01), respectively compared with the control. The amounts of ADM mRNA in myocardium and vessels were increased by 50% and 109.2% (P<0.05), respectively, and the amounts of RAMP2 mRNA was increased by 132% and 87% (P<0.01), respectively, compared with control. The levels of ADM in myocardium and vessels were positively correlated with RAMP2 mRNA, the correlation coefficients were 0.741 and 0.885 (P<0.01), respectively. The results obtained indicate that in hypertensive rats, ADM is elevated in plasma, myocardium and ves-myocardium and vessel, and ADM and RAMP2 mRNA are up-regulated in myocardium and vessel. The ADM/RAMP2 system may play an important role in the pathogenesis of hypertension.
Adrenomedullin
;
metabolism
;
Animals
;
Cardiomegaly
;
chemically induced
;
metabolism
;
Hypertension
;
chemically induced
;
metabolism
;
Myocardium
;
metabolism
;
Nitroarginine
;
pharmacology
;
RNA, Messenger
;
Rats
;
Receptor Activity-Modifying Protein 2
;
metabolism
;
Reverse Transcriptase Polymerase Chain Reaction
;
Up-Regulation
7.Impact and related mechanism of exogenous receptor activity modifying protein 1 on calcitonin gene-related peptide modified bone marrow mesenchymal stem cells on the migration of vascular smooth muscle cells in vitro.
Xianping LONG ; Can CUI ; Panke CHEN ; Song WANG ; Dongmei WANG ; Guanxue XU ; Xiaojian YAO ; Bei SHI ; Email: SHIBEI2147@163.COM.
Chinese Journal of Cardiology 2015;43(6):537-541
OBJECTIVETo investigate the impact of calcitonin gene-related peptide (CGRP) modified bone marrow mesenchymal stem cell (MSC) on the migration of vascular smooth muscle cell (VSMC) and related mechanisms.
METHODSThe MSC and VSMC were isolated from rats and cultured, CGRP was transfected to MSC with the high expression lentivirus vector, VSMC was transfected with high expression lentivirus vector of receptor activity modifying protein 1 (RAMP1) and the silence expression lentivirus vector of RAMP1. Then MSC was co-cultured with VSMC. Experimental groups were as follows: (1) Ang II group (MSC + VSMC + Ang II); (2) MSC(CGRP+) group (MSC(CGRP+) + VSMC + Ang II); (3) MSC(CGRP+) RAMP1(-) group (MSC(CGRP+) + VSMC(RAMP1-) + Ang II); (4) MSC(CGRP+) RAMP1(+) group (MSC(CGRP+) + VSMC(RAMP1+) + Ang II); (5) RAMP1(+) group (MSC + VSMC(RAMP1+) + Ang II). Transwell assay was applied to detect the migration of smooth muscle cells, Western blot was applied to detect the protein expression of cells in various groups.
RESULTSVSMC migration number was significantly lower in MSC(CGRP+) group compared with Ang II group (50.8 ± 2.6 vs. 71.4 ± 2.3, P < 0.05), but higher than in MSC(CGRP+) RAMP1(+) group (50.8 ± 2.6 vs. 30.4 ± 3.0, P < 0.05). When RAMP1 expression reduced in VSMC, compared with MSC(CGRP+) RAMP1(+) group, VSMC migration increased in the MSC(CGRP+) RAMP1(-) group compared to MSC(CGRP+)RAMP1(+) (69.0 ± 5.6 vs. 30.4 ± 3.0, P < 0.05) and was similar to Ang II group (69.0 ± 5.6 vs. 71.4 ± 2.3, P > 0.05) and RAMP1(+) group (71.6 ± 3.4). According to the result of Western blot, P-P65 protein expression in MSC(CGRP+) group was lower than that in Ang II group (0.475 ± 0.022 vs.0.642 ± 0.035, P < 0.05). P-P65 protein expression in MSC(CGRP+)RAMP1(-) group was higher than that in MSC(CGRP+) RAMP1(+) group (0.670 ± 0.030 vs. 0.373 ± 0.041, P < 0.05), and there was no difference between MSC(CGRP+)RAMP1(-) group and Ang II group (P > 0.05). P-P65 protein expression was similar between RAMP1(+) group (0.643 ± 0.039) and Ang II group (P > 0.05).
CONCLUSIONSCGRP inhibits VSMC migration through RAMP1. NF-κB and RAMP1 play crucial role in the inhibiting effects of CGRP on VSMC migration. Thus, RAMP1-CGRP signaling inhibits VSMC migration through NF-κB signal pathways.
Animals ; Bone Marrow Cells ; Calcitonin Gene-Related Peptide ; Cell Movement ; Coculture Techniques ; Hematopoietic Stem Cells ; In Vitro Techniques ; Muscle, Smooth, Vascular ; Myocytes, Smooth Muscle ; NF-kappa B ; Rats ; Receptor Activity-Modifying Protein 1 ; Signal Transduction ; Transfection
8.Effect of gene modified mesenchymal stem cells overexpression human receptor activity modified protein 1 on inflammation and cardiac repair in a rabbit model of myocardial infarction.
Ran-zun ZHAO ; Xian-ping LONG ; Zhi-jiang LIU ; Dong-mei WANG ; Bei SHI
Chinese Journal of Cardiology 2012;40(9):736-741
OBJECTIVETo investigate the effect of mesenchymal stem cells (MSCs) overexpressing human receptor activity modified protein 1 (hRAMP1) by adenovirus vector on infarction related inflammation and cardiac repair in a rabbit model of myocardial infarction (MI).
METHODSThirty rabbits underwent coronary artery ligation for 60 minutes followed by 24 hours reperfusion and divided into MSC(hRAMP1) group (intravenously injection of MSCs transfected with adenovirus vector encoding hRAMP1 gene enhanced green fluorescent protein, EGFP, n = 10), MSC(null) group (MSCs transfected with adenovirus vector encoding only EGFP without hRAMP1 gene, n = 10) and control group (equally volume of phosphate buffered saline, PBS, n = 10). The plasma level of tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were quantified by ELISA assay at before and 1, 3, 7, 28 days after induction of MI. The expression of nuclear factor-κB (NF-κB) and hRAMP1 in infracted myocardium were measured by Western blot at 1, 3, 7, 28 day following MI. The area of MI and collagen deposition and fibrosis were evaluated by TTC staining and Masson staining, respectively.
RESULTSArea of MI and collagen content were significantly reduced in MSC(hRAMP1) group compared those in MSC(null) and control group [(10.1 ± 2.9)% vs. (30.6 ± 2.7)% and (22.5 ± 3.2)%, P < 0.05]. Myocardial expression of NF-κB and plasma TNF-α[7 days after transplantation: (97.2 ± 6.7) pg/ml vs. (207.6 ± 12.7) pg/ml and (153.2 ± 9.9) pg/ml, P < 0.05] were also lower while plasma level of IL-10 [7 days after transplantation: (238.5 ± 17.5) pg/ml vs. (177.3 ± 19.8) pg/ml and (244.6 ± 27.3) pg/ml, P < 0.05] was significantly higher in MSC(hRAMP1) group than in MSC(null) and control group.
CONCLUSIONMSCs overexpression hRAMP1 could further reduce area of MI possibly through inhibiting the myocardial expression of NF-κB and reducing the plasma TNF-α level and raising plasma IL-10 level.
Amino Acid Motifs ; Animals ; Genetic Vectors ; Humans ; Inflammation ; metabolism ; Interleukin-10 ; blood ; Male ; Mesenchymal Stem Cell Transplantation ; methods ; Myocardial Infarction ; metabolism ; pathology ; surgery ; Myocardium ; metabolism ; Rabbits ; Receptor Activity-Modifying Protein 1 ; genetics ; Tumor Necrosis Factor-alpha ; blood
9.Influence of receptor activity modifying protein 1 overexpression on enhancing effect of calcitonin gene-related peptide on MG-63 cells proliferation.
Zhi-liang ZHAO ; Gang ZHANG ; Yan LI ; Ying-hui TAN
Chinese Journal of Stomatology 2012;47(8):495-500
OBJECTIVETo investigate the influnce of receptor activity modifying protein 1(RAMP-1) overexpression on enhancing effect of calcitonin gene-related peptide on MG-63 cells proliferation.
METHODSCultured MG-63 osteoblasts in exponential phase of growth were randomly divided into three groups: RAMP-1 overexpression group, empty vector control group and negative control group. RAMP-1 eukaryotic expression vector was constructed and stably transfected into MG-63 cells. Realtime-polymerase chain reaction, Western blotting and immunofluroescence were used respectively to detect the expression of calcitonin receptor-like receptor (CRLR) in the cells and its distribution on cell membrane. The status of proliferation was detected respectively at 0, 24, 48, 72, 96 h by cell counting kit-8 (CCK-8) and cells were collected to analyze their cycle respectively at 0, 8, 16, 24 h by flow cytometry.
RESULTSCRLR protein and mRNA expression levels of MG-63 cells in RAMP-1 overexpression group were significantly higher than the other two groups (P < 0.05). The A value of RAMP-1 overexpression group at 24, 48, 72, 96 h were 0.628 ± 0.175, 0.896 ± 0.592, 1.055 ± 0.004, 1.179 ± 0.618, respectively, which were significantly higher than that of the other two groups (P < 0.05). The difference was most pronounced at 72 h. S-phase fraction of RAMP-1 overexpression group was (1.25 ± 0.13)%, (68.79 ± 0.56)%, (64.49 ± 1.59)%, (57.82 ± 0.75)%, respectively, which were significantly higher than the other two groups (P < 0.05). The difference was most pronounced at 8 h.
CONCLUSIONSRAMP-1 overexpression can promote CRLR distribution on MG-63 cell membrane and enhance CGRP's promotion effect on MG-63 cell proliferation.
Bone Neoplasms ; metabolism ; pathology ; Calcitonin Gene-Related Peptide ; genetics ; metabolism ; Cell Cycle ; Cell Line, Tumor ; Cell Proliferation ; Genetic Vectors ; Humans ; Osteosarcoma ; metabolism ; pathology ; RNA, Messenger ; metabolism ; Random Allocation ; Receptor Activity-Modifying Protein 1 ; genetics ; metabolism ; Transfection