1.Clinical and genetic characteristics of 12 cases of Loeys-Dietz syndrome.
Jiaqi FAN ; Hairui SUN ; Xin WANG ; Yuduo WU ; Siyao ZHANG ; Xiaoyan HAO ; Jiancheng HAN ; Xiaoyan GU ; Ye ZHANG ; Lin SUN ; Yihua HE
Chinese Journal of Medical Genetics 2023;40(9):1093-1099
OBJECTIVE:
To summarize the clinical features and spectrum of genetic variants in 12 patients with Loeys-Dietz syndrome (LDS), and to explore the correlation between the type of genetic variants and clinical phenotypes.
METHODS:
Twelve patients suspected for LDS at Beijing Anzhen Hospital Affiliated to Capital Medical University from January 2015 to January 2022 were selected as the study subjects. Clinical data of the patients were collected. Genomic DNA was extracted from peripheral blood samples and subjected to genetic testing. Pathogenicity of candidate variants was analyzed.
RESULTS:
The clinical phenotypes of the 12 patients have mainly included cardiovascular, musculoskeletal, craniofacial, skin, ocular and other systemic signs. Four patients (patients 5-1, 5-2, 6, 7) have carried heterozygous missense variants of the TGFBR1 gene, 5 patients (patients 1-1, 1-2, 2, 3, 4) have carried heterozygous variants of the TGFBR2 gene, and 2 patients (patients 8-1, 8-2) had carried heterozygous frameshift variants of the TGFB3 gene. One patient (patient 9) had carried a heterozygous missense variant of the SMAD3 gene. Among these, TGFBR1 c.603T>G (p.1201M) and TGFB3 c.536delA (p.H179FS35) had not been reported previously.
CONCLUSION
Variants of the TGFBR1, TGFBR2, SMAD3, TGFB2, TGFB3 and SMAD2 genes are mainly associated with LDS. The severity of the disease phenotype caused by the same variant may vary, whilst the clinical phenotype caused by different variant sites may be specific.
Humans
;
Loeys-Dietz Syndrome/genetics*
;
Receptor, Transforming Growth Factor-beta Type I/genetics*
;
Receptor, Transforming Growth Factor-beta Type II/genetics*
;
Transforming Growth Factor beta3
;
Face
2.Clinical and genetic analysis of a patient with Loeys-Dietz syndrome due to variant of TGFBR2 gene.
Yueli WANG ; Zhihua KONG ; Long WAN ; Aoxue WANG ; Xiaoyan LI
Chinese Journal of Medical Genetics 2023;40(12):1531-1535
OBJECTIVE:
To explore the genetic basis of a patient with clinically suspected Loeys-Dietz syndrome (LDS).
METHODS:
A child who had presented at Beijing Anzhen Hospital in September 2018 was selected as the study subject. Clinical data and family history of the patient were collected, along with peripheral blood samples of the proband and his parents. Whole exome sequencing (WES) was carried out through next-generation sequencing.
RESULTS:
Candidate variants were searched through bioinformatic analysis focusing on genes associated with hereditary aortic aneurysms. Candidate variant was verified by Sanger sequencing. The patient was found to have cardiovascular abnormalities including early-onset aortic dilatation and coarctation, and LDS syndrome was suspected. WES revealed that he has harbored a heterozygous c.1526G>T missense variant of the TGFBR2 gene. The same variant was not found in either parent and was predicted as likely pathogenic (PM1+PM2_Supporting+ PM6+PP3+PP4) based on the guidelines from the American College for Medical Genetics and Genomics (ACMG).
CONCLUSION
The TGFBR2 c.1526G>T variant probably underlay the LDS in this patient and was unreported previously in China. Above finding has enriched the mutational spectrum of the TGFBR2 gene associated with the LDS and provided a basis for the genetic counseling for the patient.
Child
;
Humans
;
Male
;
China
;
Computational Biology
;
Family
;
Loeys-Dietz Syndrome/genetics*
;
Mutation
;
Receptor, Transforming Growth Factor-beta Type II/genetics*
3.GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma.
Yingxi DU ; Yarui MA ; Qing ZHU ; Yong FU ; Yutong LI ; Ying ZHANG ; Mo LI ; Feiyue FENG ; Peng YUAN ; Xiaobing WANG
Frontiers of Medicine 2023;17(1):119-131
Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Cisplatin/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Growth Differentiation Factor 15/therapeutic use*
;
Receptor, Transforming Growth Factor-beta Type II/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic
4.Naringenin inhibits thoracic aortic aneurysm formation in mice with Marfan syndrome.
Zhi Qing LI ; Bing YU ; Ze Yu CAI ; Ying Bao WANG ; Xu ZHANG ; Biao ZHOU ; Xiao Hong FANG ; Fang YU ; Yi FU ; Jin Peng SUN ; Wei LI ; Wei KONG
Journal of Peking University(Health Sciences) 2022;54(5):896-906
OBJECTIVE:
To identify whether naringenin plays a protective role during thoracic aneurysm formation in Marfan syndrome.
METHODS:
To validate the effect of naringenin, Fbn1C1039G/+ mice, the mouse model of Marfan syndrome, were fed with naringenin, and the disease progress was evaluated. The molecular mechanism of naringenin was further investigated via in vitro studies, such as bioluminescence resonance energy transfer (BRET), atomic force microscope and radioligand receptor binding assay.
RESULTS:
Six-week-old Fbn1C1039G/+ mice were fed with naringenin for 20 weeks. Compared with the control group, naringenin significantly suppressed the aortic expansion [Fbn1C1039G/+ vs. Fbn1C1039G/++naringenin: (2.49±0.47) mm, n=18 vs. (1.87±0.19) mm, n=22, P < 0.05], the degradation of elastin, and the expression and activity of matrix metalloproteinase 2 (MMP2) and MMP9 in the ascending aorta of Fbn1C1039G/+ mice. Besides, treatment with naringenin for 6 weeks also attenuated the disease progress among the 20-week-old Fbn1C1039G/+ mice with established thoracic aortic aneurysms [Fbn1C1039G/+ vs. Fbn1C1039G/++naringenin: (2.24±0.23) mm, n=8 vs. (1.90±0.17) mm, n=8, P < 0.05]. To understand the underlying molecular mechanisms, we examined the effects of naringenin on angiotensin Ⅱ type 1 receptor (AT1) signaling and transforming growth factor-β (TGF-β) signaling respectively, which were the dominant signaling pathways contributing to aortopathy in Marfan syndrome as previously reported. The results showed that naringenin decreased angiotensin Ⅱ (Ang Ⅱ)-induced phosphorylation of protein kinase C (PKC) and extracellular regulating kinase 1/2 (ERK1/2) in HEK293A cell overexpressing AT1 receptor. Moreover, naringenin inhibited Ang Ⅱ-induced calcium mobilization and uclear factor of activated T-cells (NFAT) signaling. The internalization of AT1 receptor and its binding to β-arrestin-2 with Ang Ⅱ induction were also suppressed by naringenin. As evidenced by atomic force microscope and radioligand receptor binding assay, naringenin inhibited Ang Ⅱ binding to AT1 receptor. In terms of TGF-β signaling, we found that feeding the mice with naringenin decreased the phosphorylation of Smad2 and ERK1/2 as well as the expression of TGF-β downstream genes. Besides, the serum level of TGF-β was also decreased by naringenin in the Fbn1C1039G/+ mice. Furthermore, we detected the effect of naringenin on platelet, a rich source of TGF-β, both in vivo and in vitro. And we found that naringenin markedly decreased the TGF-β level by inhibiting the activation of platelet.
CONCLUSION
Our study showed that naringenin has a protective effect on thoracic aortic aneurysm formation in Marfan syndrome by suppressing both AT1 and TGF-β signaling.
Angiotensin II/metabolism*
;
Animals
;
Aortic Aneurysm, Thoracic/prevention & control*
;
Calcium/metabolism*
;
Disease Models, Animal
;
Elastin/metabolism*
;
Fibrillin-1/metabolism*
;
Flavanones
;
Marfan Syndrome/metabolism*
;
Matrix Metalloproteinase 2
;
Matrix Metalloproteinase 9
;
Mice
;
Mice, Inbred C57BL
;
Protein Kinase C/metabolism*
;
Receptor, Angiotensin, Type 1/metabolism*
;
Transforming Growth Factor beta/metabolism*
;
Transforming Growth Factors/metabolism*
;
beta-Arrestins/metabolism*
5.Effects of centella asiatica granule on the expression of TGF-β and related down-stream signals in rats with early diabetic nephropathy.
Ji-Wei MA ; Hong-Tian WANG ; Hao-Fei LIU ; Yuan DING ; Ji-Qiong BAI ; Zhu ZHANG
Chinese Journal of Applied Physiology 2018;34(1):69-73
OBJECTIVE:
To investigate the effects of centella asiatica (CA) granule on the expression of transform growth factor-β(TGF-β) and related down-stream signals in rats with early diabetic nephropathy(DN) and to clarify the molecular mechanisms of CA molecular mechanism of on preventing and curing early diabetic kidney disease DN by studying the effects of centella asiatica on TGF-β expression and related down-stream signals.
METHODS:
Sixty male SD rats were divided into control group(=10) and DN model group(=50). The model rats were made a right nephrectomy. One week later, diabetic nephropathy was induced by intraperitoneal injection of streptocozin(30 mg/kg) for three consecutive days. High blood glucose level of Tail vein (fasting glucose ≥ 16.7 mmol/L) and high urinary protein level(total protein level in DN group was more than twice higher than the control group) were measured to confirm early DN in rats. In the sham operation group, the right renal capsule was damaged and the corresponding amount of saline was injected. The model rats were administrated by the means of intragastric administration. The DN model group were divided into DN group, DN+fosinopril group(1.6 mg/kg·d), DN+high CA group(16.8 mg/kg·d), DN+medium CA group(11.2 mg/kg·d) and DN+low CA group(5.6 mg/kg·d), and each group was intragastric administration one time every morning last for 16 weeks. The expressions of mRNA and protein of TGF-β, TβR1, TβR2, Smad2/3, Smad7 and the level of Smad2/3 phosphorylation were detected by using real time quantitative polymerase chain reaction and Western blot.
RESULTS:
The expressions of mRNA and protein of TGF-β, TβR1, TβR2, Smad2/3 and the level of Smad2/3 phosphorylation were significantly increased, the expressions of mRNA and protein of Smad7 were dramatically decreased. The fosinopril and high dosage CA could reverse the effects of DN.
CONCLUSIONS
CA plays an important role in preventing and curing DN through regulating the TGF-β/Smad signaling pathways.
Animals
;
Centella
;
chemistry
;
Diabetes Mellitus, Experimental
;
Diabetic Nephropathies
;
chemically induced
;
drug therapy
;
metabolism
;
Drugs, Chinese Herbal
;
pharmacology
;
Kidney
;
physiopathology
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Transforming Growth Factor-beta Type I
;
metabolism
;
Receptor, Transforming Growth Factor-beta Type II
;
metabolism
;
Signal Transduction
;
Smad2 Protein
;
metabolism
;
Smad3 Protein
;
metabolism
;
Smad7 Protein
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
6.TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence.
Lucy CASSAR ; Craig NICHOLLS ; Alex R PINTO ; Ruping CHEN ; Lihui WANG ; He LI ; Jun-Ping LIU
Protein & Cell 2017;8(1):39-54
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
Actin-Related Protein 2
;
genetics
;
metabolism
;
Activin Receptors, Type II
;
genetics
;
metabolism
;
Bone Morphogenetic Protein 7
;
genetics
;
metabolism
;
Bone Morphogenetic Protein Receptors, Type II
;
genetics
;
metabolism
;
Breast Neoplasms
;
genetics
;
metabolism
;
Cellular Senescence
;
Female
;
HeLa Cells
;
Humans
;
MCF-7 Cells
;
Neoplasm Proteins
;
genetics
;
metabolism
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
Receptor, Transforming Growth Factor-beta Type II
;
Receptors, Transforming Growth Factor beta
;
genetics
;
metabolism
;
Smad3 Protein
;
genetics
;
metabolism
;
Telomerase
;
genetics
;
metabolism
;
Telomere Homeostasis
7.Inhibitory Effect of Angiotensin Blockade on Hepatic Fibrosis in Common Bile Duct-ligated Rats.
Dong Hun PARK ; Soon Koo BAIK ; Yeon Hee CHOI ; Moon Young KIM ; Dae Wook RHIM ; Jae Woo KIM ; Sang Ok KWON ; Mi Yun CHO ; Chul Han KIM ; Seung Chan AHN
The Korean Journal of Hepatology 2007;13(1):61-69
BACKGROUNDS AND AIMS: Angiotensin receptors are found on hepatic stellate cells, which participate in hepatic fibrosis. Therefore, it is presumed that angiotensin has a role in hepatic fibrosis. The aim of this study was to evaluate the effects of angiotensin blockade on inhibition of hepatic fibrosis in cirrhotic rat model. Material and METHODS: Cirrhosis with portal hypertension was produced by common bile duct ligation (BDL) in the adult Sprague-Dawley rats. They were classified into 4 groups (each group n=6) as follows; G1: BDL without drug, G2: BDL+captopril 100 mg/kg/day beginning 2 weeks after BDL, G3: BDL+captopril 100 mg/kg/day, starting just after BDL, G4: BDL+losartan 10 mg/kg/day, starting just after BDL. After 4 weeks following BDL, hepatic fibrosis was histomorphologically analyzed by Batts & Ludwig score. Alpha smooth muscle actin by immunohistochemical stain, hydroxyproline contents of liver tissue by spectrophotometry and expression of collagen, procollagen, and TGF-beta by real-time PCR were measured. RESULTS: Batts & Ludwig score were 3.8, 3.0, 2.6,and 2.6 in G1, G2, G3, and G4, respectively. The expression of alpha-SMA was significantly lower in G3 and G4 than in G1; 11.9%, 10.9%, 2.6%, and 1.1% in G1, G2, G3, and G4, respectively (p<0.05). The concentration of hydroxyproline (microgram/g liver tissue) was lower in G3 and G4 compared with G1 (p<0.05). Also, the administration of angiotensin blockade just after BDL significantly reduced the expression of collagen, procollagen, and TGF-beta mRNA. CONCLUSIONS: Angiotensin blockades are effective in the prevention of hepatic fibrosis in BDL rats.
Actins/metabolism
;
Angiotensin II Type 1 Receptor Blockers/administration & dosage/*therapeutic use
;
Animals
;
Bile Ducts/pathology/surgery
;
Captopril/administration & dosage/*therapeutic use
;
Fibrosis
;
Hydroxyproline/metabolism
;
Ligation
;
Liver/drug effects/metabolism/pathology
;
Liver Cirrhosis, Experimental/*drug therapy/etiology/metabolism
;
Losartan/administration & dosage/*therapeutic use
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Transforming Growth Factor beta/metabolism
8.Effects of angiotensin converting enzyme inhibitor, angiotensin II type I receptor blocker and their combination on postinfarcted ventricular remodeling in rats.
Rui-ying ZHANG ; Lan-feng WANG ; Lei ZHANG ; Xiang-ning MENG ; Shao-jun LI ; Wu-ru WANG
Chinese Medical Journal 2006;119(8):649-655
BACKGROUNDTransforming growth factor (TGF) beta(1)-Smads signal plays an important role in cardiac remodeling following myocardial infarction (MI). In addition, both angiotensin converting enzyme inhibitor (ACEI) and angiotensin II type I receptor blocker (ARB) can effectively prevent left ventricular remodeling. The current study focused on whether the combination of ACEI and ARB is more beneficial for preventing ventricular remodeling and whether Smad proteins mediate this beneficial effect.
METHODSMI was induced by ligating the left anterior descending coronary artery in rats. Twenty-four hours after ligation, the survived rats were randomly divided into five groups and treated for 8 weeks: placebo group, ACEI group (benazepril 10 mg.kg(-1).d(-1)), ARB group (irbesartan 50 mg.kg(-1).d(-1)), ACEI + ARB group (benazepril 10 mg.kg(-1).d(-1) + irbesartan 50 mg.kg(-1).d(-1)) and control group (sham-operated rats). After 8 weeks, we examined the following indexes: the ratio of ventricular weight to body weight (VW/BW), left ventricular end diastolic dimension (LVDd), ejection fraction (EF), fractional shortening (FS), ratio of E-wave to A-wave velocity, collagen of noninfarcted zone, the mRNA expression of TGFbeta(1), Smad 2, and Smad 3 by RT-PCR in noninfarcted zone, the protein expression of Smad 2 and Smad 3 in noninfarcted zone by Western blot.
RESULTSVW/BW significantly increased in the placebo groups compared with that in the control group (P < 0.01). This increase was limited in ACEI, ARB, and combined groups (P < 0.01 compared with placebo group). There was no significant difference among the three actively treated groups. Collagen was increased in placebo group (5.68 +/- 0.5)% compared with that in control group (P < 0.01). ACEI, ARB and combined treatment attenuated this increase of collagen [(4.3 +/- 0.5)%, (3.5 +/- 0.5)%, (3.2 +/- 0.4)%] in comparison with that in placebo group (P < 0.01 respectively). Combined treatment showed more significant effect on collagen deposition. EF and FS significantly decreased, LVDd and E/A significantly increased in placebo group compared with that in control group (P < 0.01 respectively). ACEI, ARB and combined treatment ameliorated these indexes (P < 0.01 compared with placebo group). The mRNA expression of TGFbeta(1), Smad 2, and Smad 3 (0.700 +/- 0.045, 0.959 +/- 0.037 and 0.850 +/- 0.051) increased in placebo group compared with that in control group (P < 0.01). ACEI, ARB and combined treatment normalized the increase (P < 0.01). Furthermore, ARB and combined treatment proved to be more effective in decreasing TGF beta(1) and Smad mRNA expression than ACEI treatment (P < 0.01). The expression of Smad 2 and Smad 3 protein increased in placebo group compared with that in control group (P < 0.01). ACEI, ARB and combined treatment normalized the increase (P < 0.01). Furthermore, ARB and combined treatment proved to be more effective than ACEI alone (P < 0.01).
CONCLUSIONSTGFbeta(1)-Smads signal activation is correlated with ventricular remodeling following MI. ACEI and ARB treatment prevents ventricular remodeling by inhibiting expression of Smad 2 and Smad 3. ARB and combined treatment are more effective than ACEI alone.
Angiotensin II Type 1 Receptor Blockers ; administration & dosage ; therapeutic use ; Angiotensin-Converting Enzyme Inhibitors ; administration & dosage ; therapeutic use ; Animals ; Drug Therapy, Combination ; Echocardiography ; Male ; Myocardial Infarction ; drug therapy ; Rats ; Rats, Wistar ; Smad2 Protein ; analysis ; genetics ; Smad3 Protein ; analysis ; genetics ; Transforming Growth Factor beta ; genetics ; Transforming Growth Factor beta1 ; Ventricular Remodeling ; drug effects
9.Perindopril attenuates the progression of CCl4-inducing rat hepatic fibrosis.
Xu LI ; Ying MENG ; Xi-shan YANG ; Zhen-shu ZHANG ; Ping-sheng WU ; Jun-ling ZOU
Chinese Journal of Hepatology 2004;12(1):32-34
OBJECTIVESThe aim of the present study was to determine the effects of angiotensin-converting enzyme inhibitor, perindopril, on the progression of rat hepatic fibrosis induced by CCl4.
METHODSMale wistar rats weighting about 250g were treated with perindopril (2mg/kg, daily gavage), except for model group and control group. After 4, 6 weeks, morphological examination was based on microscopy. RT-PCR was utilized to detect gene expression of angiotensin II type 1 receptor (AT1 receptor) in the liver. Meanwhile, the protein expressions of AT1 receptor, transforming growth factor beta 1 (TGF-beta1) and platelet-derived growth factor-BB (PDGF-BB) in liver tissue were examined by Western blot. The activity of matrix metalloproteinase-2 (MMP-2) was assessed by zymography. Serum laminin (LN) and hyaluronic acid (HA) were measured using radio-immunity technique.
RESULTSRT-PCR and Western blot revealed that there was a up-regulation in AT1 receptor expression in model group compared with control group. Perindopril treatment significantly reduced mean fibrosis score, messenger RNA and protein levels of AT1 receptor, protein levels of TGF-beta1 and PDGF-BB, Serum levels of HA and LN, and MMP-2 activity.
CONCLUSIONThese results suggest that angiotensin II may play an important role in fibrosis of liver. Perindopril may have a inhibiting effect on CCl4-induced hepatic fibrogenesis of rat.
Angiotensin II ; physiology ; Angiotensin II Type 1 Receptor Blockers ; Angiotensin-Converting Enzyme Inhibitors ; pharmacology ; Animals ; Blotting, Western ; Carbon Tetrachloride ; toxicity ; Liver ; pathology ; Liver Cirrhosis, Experimental ; chemically induced ; prevention & control ; Male ; Perindopril ; pharmacology ; Platelet-Derived Growth Factor ; antagonists & inhibitors ; Proto-Oncogene Proteins c-sis ; Rats ; Rats, Wistar ; Transforming Growth Factor beta ; antagonists & inhibitors ; Transforming Growth Factor beta1
10.Renal protective effect of angiotensin II receptor antagonist on growth hormone-treated nephrotic rats.
Shuang LI ; Bin CAO ; Qi-hua FENG ; Xiao-zhong LI
Chinese Journal of Pediatrics 2003;41(11):817-821
OBJECTIVEChildren with nephrotic syndrome are always associated with retardation of growth. Growth hormone (GH) administration to these children can stimulate their growth, but it plays an important role in glomerulosclerosis. Thus these children would take a risk to use it to improve their growth. This study was designed to investigate the effect of GH on the kidney of rats with adriamycin-induced nephropathy (AN) and its mechanism, and to observe the renoprotective effect of angiotensin II (AngII) receptor antagonist, irbesartan, in GH-treated AN rats.
METHODSRats were divided into the following groups: normal control rats, AN rats, GH-treated AN rats and GH plus irbesartan-treated AN rats. There were 8 developing male SD rats (120-130 g) in each group. Urinary protein was measured at weeks 3, 6 and 9. Blood pressure, serum creatinine, BUN, albumin, cholesterol, triglyceride, as well as ACE activity and AngII concentration of the kidney were detected at the end of the study. Renal pathological changes were evaluated also. Immunohistochemistry was used to examine the protein expressions of TGF beta(1), collagen IV and fibronectin in glomeruli.
RESULTSGlomerular sclerosis score of GH-treated AN rats (49.4 +/- 9.8) was significantly higher than that of AN rats (12.8 +/- 5.5, P < 0.01), and this score of GH-treated AN rats plus irbesartan (26.2 +/- 7.5) was significantly lower than the score of GH-treated AN rats (P < 0.01). The changes of urinary protein, hyperlipidemia and hypoalbuminemia in rats of each group consisted with the degree of glomerular injury in rats of each group. There was azotemia in GH-treated AN rats, but rats in the other groups did not have azotemia. ACE activity of kidney was significantly (P < 0.01) increased in GH-treated AN rats [(28.1 +/- 4.1) U/mg pro] and GH-treated AN rats plus irbesartan [(27.6 +/- 3.4) U/mg pro] compared with that in AN rats [(14.6 +/- 4.4) U/mg pro]. AngII concentrations in the kidney of GH-treated AN rats [(17.8 +/- 3.3) pg/mg pro] and GH-treated AN rats plus irbesartan [(27.3 +/- 5.1) pg/mg pro] were significantly higher than that in AN rats [(8.3 +/- 1.9) pg/mg pro] (P < 0.01). The protein expressions of TGF-beta(1), collagen IV and fibronectin in GH-treated AN rats were the most distinct in all groups. These expressions were significantly (P < 0.05) reduced in GH-treated AN rats plus irbesartan.
CONCLUSIONGH is able to exacerbate adriamycin-induced nephropathy in rats, which was partly through activating renal tissue RAS and initiating the function of the AngII-TGF beta(1)-ECM axis. Angiotensin II receptor antagonist, irbesartan, has some renal protective effects on AN rats treated with GH.
Angiotensin II ; analysis ; Angiotensin Receptor Antagonists ; Animals ; Antibiotics, Antineoplastic ; toxicity ; Biphenyl Compounds ; pharmacology ; therapeutic use ; Blood Urea Nitrogen ; Collagen Type IV ; analysis ; Creatinine ; blood ; Disease Models, Animal ; Doxorubicin ; toxicity ; Fibronectins ; analysis ; Growth Hormone ; pharmacology ; Immunohistochemistry ; Kidney Diseases ; chemically induced ; drug therapy ; Kidney Glomerulus ; chemistry ; drug effects ; pathology ; Male ; Peptidyl-Dipeptidase A ; analysis ; Proteinuria ; urine ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Serum Albumin ; metabolism ; Tetrazoles ; pharmacology ; therapeutic use ; Transforming Growth Factor beta ; analysis ; Triglycerides ; blood

Result Analysis
Print
Save
E-mail