1.Clinical and genetic characteristics of 12 cases of Loeys-Dietz syndrome.
Jiaqi FAN ; Hairui SUN ; Xin WANG ; Yuduo WU ; Siyao ZHANG ; Xiaoyan HAO ; Jiancheng HAN ; Xiaoyan GU ; Ye ZHANG ; Lin SUN ; Yihua HE
Chinese Journal of Medical Genetics 2023;40(9):1093-1099
OBJECTIVE:
To summarize the clinical features and spectrum of genetic variants in 12 patients with Loeys-Dietz syndrome (LDS), and to explore the correlation between the type of genetic variants and clinical phenotypes.
METHODS:
Twelve patients suspected for LDS at Beijing Anzhen Hospital Affiliated to Capital Medical University from January 2015 to January 2022 were selected as the study subjects. Clinical data of the patients were collected. Genomic DNA was extracted from peripheral blood samples and subjected to genetic testing. Pathogenicity of candidate variants was analyzed.
RESULTS:
The clinical phenotypes of the 12 patients have mainly included cardiovascular, musculoskeletal, craniofacial, skin, ocular and other systemic signs. Four patients (patients 5-1, 5-2, 6, 7) have carried heterozygous missense variants of the TGFBR1 gene, 5 patients (patients 1-1, 1-2, 2, 3, 4) have carried heterozygous variants of the TGFBR2 gene, and 2 patients (patients 8-1, 8-2) had carried heterozygous frameshift variants of the TGFB3 gene. One patient (patient 9) had carried a heterozygous missense variant of the SMAD3 gene. Among these, TGFBR1 c.603T>G (p.1201M) and TGFB3 c.536delA (p.H179FS35) had not been reported previously.
CONCLUSION
Variants of the TGFBR1, TGFBR2, SMAD3, TGFB2, TGFB3 and SMAD2 genes are mainly associated with LDS. The severity of the disease phenotype caused by the same variant may vary, whilst the clinical phenotype caused by different variant sites may be specific.
Humans
;
Loeys-Dietz Syndrome/genetics*
;
Receptor, Transforming Growth Factor-beta Type I/genetics*
;
Receptor, Transforming Growth Factor-beta Type II/genetics*
;
Transforming Growth Factor beta3
;
Face
2.Clinical and genetic analysis of a patient with Loeys-Dietz syndrome due to variant of TGFBR2 gene.
Yueli WANG ; Zhihua KONG ; Long WAN ; Aoxue WANG ; Xiaoyan LI
Chinese Journal of Medical Genetics 2023;40(12):1531-1535
OBJECTIVE:
To explore the genetic basis of a patient with clinically suspected Loeys-Dietz syndrome (LDS).
METHODS:
A child who had presented at Beijing Anzhen Hospital in September 2018 was selected as the study subject. Clinical data and family history of the patient were collected, along with peripheral blood samples of the proband and his parents. Whole exome sequencing (WES) was carried out through next-generation sequencing.
RESULTS:
Candidate variants were searched through bioinformatic analysis focusing on genes associated with hereditary aortic aneurysms. Candidate variant was verified by Sanger sequencing. The patient was found to have cardiovascular abnormalities including early-onset aortic dilatation and coarctation, and LDS syndrome was suspected. WES revealed that he has harbored a heterozygous c.1526G>T missense variant of the TGFBR2 gene. The same variant was not found in either parent and was predicted as likely pathogenic (PM1+PM2_Supporting+ PM6+PP3+PP4) based on the guidelines from the American College for Medical Genetics and Genomics (ACMG).
CONCLUSION
The TGFBR2 c.1526G>T variant probably underlay the LDS in this patient and was unreported previously in China. Above finding has enriched the mutational spectrum of the TGFBR2 gene associated with the LDS and provided a basis for the genetic counseling for the patient.
Child
;
Humans
;
Male
;
China
;
Computational Biology
;
Family
;
Loeys-Dietz Syndrome/genetics*
;
Mutation
;
Receptor, Transforming Growth Factor-beta Type II/genetics*
3.TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence.
Lucy CASSAR ; Craig NICHOLLS ; Alex R PINTO ; Ruping CHEN ; Lihui WANG ; He LI ; Jun-Ping LIU
Protein & Cell 2017;8(1):39-54
Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor- and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor- and Smad3-mediated repression of the hTERT gene.
Actin-Related Protein 2
;
genetics
;
metabolism
;
Activin Receptors, Type II
;
genetics
;
metabolism
;
Bone Morphogenetic Protein 7
;
genetics
;
metabolism
;
Bone Morphogenetic Protein Receptors, Type II
;
genetics
;
metabolism
;
Breast Neoplasms
;
genetics
;
metabolism
;
Cellular Senescence
;
Female
;
HeLa Cells
;
Humans
;
MCF-7 Cells
;
Neoplasm Proteins
;
genetics
;
metabolism
;
Protein-Serine-Threonine Kinases
;
genetics
;
metabolism
;
Receptor, Transforming Growth Factor-beta Type II
;
Receptors, Transforming Growth Factor beta
;
genetics
;
metabolism
;
Smad3 Protein
;
genetics
;
metabolism
;
Telomerase
;
genetics
;
metabolism
;
Telomere Homeostasis
4.Effects of angiotensin converting enzyme inhibitor, angiotensin II type I receptor blocker and their combination on postinfarcted ventricular remodeling in rats.
Rui-ying ZHANG ; Lan-feng WANG ; Lei ZHANG ; Xiang-ning MENG ; Shao-jun LI ; Wu-ru WANG
Chinese Medical Journal 2006;119(8):649-655
BACKGROUNDTransforming growth factor (TGF) beta(1)-Smads signal plays an important role in cardiac remodeling following myocardial infarction (MI). In addition, both angiotensin converting enzyme inhibitor (ACEI) and angiotensin II type I receptor blocker (ARB) can effectively prevent left ventricular remodeling. The current study focused on whether the combination of ACEI and ARB is more beneficial for preventing ventricular remodeling and whether Smad proteins mediate this beneficial effect.
METHODSMI was induced by ligating the left anterior descending coronary artery in rats. Twenty-four hours after ligation, the survived rats were randomly divided into five groups and treated for 8 weeks: placebo group, ACEI group (benazepril 10 mg.kg(-1).d(-1)), ARB group (irbesartan 50 mg.kg(-1).d(-1)), ACEI + ARB group (benazepril 10 mg.kg(-1).d(-1) + irbesartan 50 mg.kg(-1).d(-1)) and control group (sham-operated rats). After 8 weeks, we examined the following indexes: the ratio of ventricular weight to body weight (VW/BW), left ventricular end diastolic dimension (LVDd), ejection fraction (EF), fractional shortening (FS), ratio of E-wave to A-wave velocity, collagen of noninfarcted zone, the mRNA expression of TGFbeta(1), Smad 2, and Smad 3 by RT-PCR in noninfarcted zone, the protein expression of Smad 2 and Smad 3 in noninfarcted zone by Western blot.
RESULTSVW/BW significantly increased in the placebo groups compared with that in the control group (P < 0.01). This increase was limited in ACEI, ARB, and combined groups (P < 0.01 compared with placebo group). There was no significant difference among the three actively treated groups. Collagen was increased in placebo group (5.68 +/- 0.5)% compared with that in control group (P < 0.01). ACEI, ARB and combined treatment attenuated this increase of collagen [(4.3 +/- 0.5)%, (3.5 +/- 0.5)%, (3.2 +/- 0.4)%] in comparison with that in placebo group (P < 0.01 respectively). Combined treatment showed more significant effect on collagen deposition. EF and FS significantly decreased, LVDd and E/A significantly increased in placebo group compared with that in control group (P < 0.01 respectively). ACEI, ARB and combined treatment ameliorated these indexes (P < 0.01 compared with placebo group). The mRNA expression of TGFbeta(1), Smad 2, and Smad 3 (0.700 +/- 0.045, 0.959 +/- 0.037 and 0.850 +/- 0.051) increased in placebo group compared with that in control group (P < 0.01). ACEI, ARB and combined treatment normalized the increase (P < 0.01). Furthermore, ARB and combined treatment proved to be more effective in decreasing TGF beta(1) and Smad mRNA expression than ACEI treatment (P < 0.01). The expression of Smad 2 and Smad 3 protein increased in placebo group compared with that in control group (P < 0.01). ACEI, ARB and combined treatment normalized the increase (P < 0.01). Furthermore, ARB and combined treatment proved to be more effective than ACEI alone (P < 0.01).
CONCLUSIONSTGFbeta(1)-Smads signal activation is correlated with ventricular remodeling following MI. ACEI and ARB treatment prevents ventricular remodeling by inhibiting expression of Smad 2 and Smad 3. ARB and combined treatment are more effective than ACEI alone.
Angiotensin II Type 1 Receptor Blockers ; administration & dosage ; therapeutic use ; Angiotensin-Converting Enzyme Inhibitors ; administration & dosage ; therapeutic use ; Animals ; Drug Therapy, Combination ; Echocardiography ; Male ; Myocardial Infarction ; drug therapy ; Rats ; Rats, Wistar ; Smad2 Protein ; analysis ; genetics ; Smad3 Protein ; analysis ; genetics ; Transforming Growth Factor beta ; genetics ; Transforming Growth Factor beta1 ; Ventricular Remodeling ; drug effects
5.GDF15 negatively regulates chemosensitivity via TGFBR2-AKT pathway-dependent metabolism in esophageal squamous cell carcinoma.
Yingxi DU ; Yarui MA ; Qing ZHU ; Yong FU ; Yutong LI ; Ying ZHANG ; Mo LI ; Feiyue FENG ; Peng YUAN ; Xiaobing WANG
Frontiers of Medicine 2023;17(1):119-131
Treating patients with esophageal squamous cell carcinoma (ESCC) is challenging due to the high chemoresistance. Growth differentiation factor 15 (GDF15) is crucial in the development of various types of tumors and negatively related to the prognosis of ESCC patients according to our previous research. In this study, the link between GDF15 and chemotherapy resistance in ESCC was further explored. The relationship between GDF15 and the chemotherapy response was investigated through in vitro and in vivo studies. ESCC patients with high levels of GDF15 expression showed an inferior chemotherapeutic response. GDF15 improved the tolerance of ESCC cell lines to low-dose cisplatin by regulating AKT phosphorylation via TGFBR2. Through an in vivo study, we further validated that the anti-GDF15 antibody improved the tumor inhibition effect of cisplatin. Metabolomics showed that GDF15 could alter cellular metabolism and enhance the expression of UGT1A. AKT and TGFBR2 inhibition resulted in the reversal of the GDF15-induced expression of UGT1A, indicating that TGFBR2-AKT pathway-dependent metabolic pathways were involved in the resistance of ESCC cells to cisplatin. The present investigation suggests that a high level of GDF15 expression leads to ESCC chemoresistance and that GDF15 can be targeted during chemotherapy, resulting in beneficial therapeutic outcomes.
Humans
;
Esophageal Squamous Cell Carcinoma/drug therapy*
;
Cisplatin/metabolism*
;
Esophageal Neoplasms/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Carcinoma, Squamous Cell/genetics*
;
Growth Differentiation Factor 15/therapeutic use*
;
Receptor, Transforming Growth Factor-beta Type II/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic