1.Research advances of M3 receptor: a new target for treating and preventing cardiovascular disease.
Yan LIU ; Yan-jie LÜ ; Bao-feng YANG
Acta Pharmaceutica Sinica 2015;50(4):393-399
Cardiovascular disease, with high morbidity and mortality, has been threatening the health of human beings. Therefore, expecting to find a more effective therapeutic method, a plenty of researchers devote themselves to the study of the cardiovascular disease all the time. Since discovered on the heart, M3 receptor of muscarinic acetylcholine receptor (mAchR, M receptor) became a new starting point of the research of the cardiovascular disease. With more and more investigation, many people found that M3 receptor could protect the heart from kinds of cardiovascular disease, which may make it a new hopeful therapeutic point. So, expecting to give support to the reference and encouragement for the study of disease related to M3 receptor in future, this review expounds M3 receptor on the heart from the main following aspects: the effect on the heart, the influence on the cardiovascular disease and the mechanism of M3 receptor involved.
Cardiovascular Diseases
;
prevention & control
;
Heart
;
physiology
;
physiopathology
;
Humans
;
Receptor, Muscarinic M3
;
physiology
3.M3 Subtype of Muscarinic Receptors Mediate Ca2+ Release from Intracellular Stores in Rat Prostate Neuroendocrine Cells.
Jin Kyoung KIM ; Soo Jung KIM ; Ji Eun LEE ; Kyeong Min MIN ; Sung Joon KIM
Journal of Korean Medical Science 2005;20(2):256-261
Our previous studies document the expression of adrenoceptors and purinoceptors in the rat prostate neuroendocrine cells (RPNECs). However, a direct investigation of the receptors for acetylcholine (ACh) is still lacking in the prostate neuroendocrine cells. RPNECs were freshly isolated from the ventral lobes of rat prostate by using collagenase. Effects of ACh and various muscarinic antagonists on the intracellular Ca2+ concentration ([Ca2+]c ) were investigated by using the fura-2 spectrofluorimetry. Single-cell RT-PCR analysis was applied to identify the transcripts for the muscarinic receptor subtypes. ACh (5 micrometer) induced a sharp transient increase in the [Ca2+]c of RPNECs, which was independent of the extracellular Ca2+. In the same RPNECs, high KCl (60 mM), phenylephrine (5micrometer), UTP (P2Y1/2 agonist, 50, micrometer), and alpha, beta-meATP (P2X1/3 agonist, 0.5micrometer) also increased the [Ca2+]c. The ACh-induced [Ca2+]c change (delta[Ca2+]c ) was blocked by atropine or by para-fluorohexahydrosiladifenidol (M3 antagonist, 0.3micrometer), but not by telenzepine (M1 antagonist, 1 micrometer) and himbacine (M2 and M4 antagonist, 1 mircoM). The single-cell RT-PCR demonstrated the selective expression of mRNAs for M3 in RPNECs. In summary, RPNECs express M3 muscarinic receptors that are linked to the release of Ca2+ from intracellular stores. The Ca2+ signals of RPNECs might mediate the parasympathetic regulation of prostate gland.
Acetylcholine/pharmacology
;
Animals
;
Calcium/*metabolism
;
Calcium Signaling
;
Male
;
Neurosecretory Systems/*metabolism
;
Prostate/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Muscarinic M3/*physiology
;
Research Support, Non-U.S. Gov't
4.Acetylcholine induces hyperpolarization independent of NO-release in guinea pig spiral modiolar artery.
Li LI ; Lei ZHAO ; Jun-Qiang SI
Chinese Journal of Applied Physiology 2009;25(1):107-111
AIMAcetylcholine(ACh) is a neurotransmitter and a potent vasodilator in many vascular beds. ACh hyperpolarizes the smooth muscle cells(SMCs) of arteries including the cochlear spiral modiolar artery(SMA) via an endothelium-dependent mechanism, but the biochemical and biophysical basis of the hyperpolarization and vasodilation remain unclear and controversial.
METHODSUsing intracellular recording techniques and an in vitro preparation of the SMA, the ionic mechanism of the hyperpolarization and a possible role of nitric oxide(NO) were investigated.
RESULTSWith 5 mmol/L K(+) in the bathing solution and a minimum longitudinal tension, ACh (0.1-10 micromol/L) induced a robust hyperpolarization in low RP cells but caused a depolarization in the high RP cells. The ACh hyperpolarization was fast in onset and offset and the amplitude was concentration-dependent(22 and 30 mV by 1 micromol/L and 10 micromol/L ACh, respectively, n = 7 ). ACh also hyperpolarized the cells that initially had a high resting potential (RP) but were pre-depolarized by Ba(2+) (50-100 micromol/L). The onset time courses of the hyperpolarization were often slower in these cases than those without the presence of Ba(2+) . The ACh-induced hyperpolarization was blocked by atropine (0.1- 1 micromol/L, n = 6) or DAMP (50 -100 nmol/L, n = 6, a selective M3 antagonist) and also by BAPTA-AM (10 micromol/L, n = 7, a membrane-permeable Ca(2+)-chelator), or charybdotoxin plus apamin (50-100 nmol/L, n= 4, Ca(2+) -activated K(+) -channel blockers), but not by Nomega-nitro-L-arginine methyl ester (L-NAME, 300 micromol/L, n = 8, an inhibitor of NO-synthase), glipizide (10 micromol/L, n = 4, ATP-sensitive K(+) -channel blocker) and indomethacin (10 micromol/L, n = 4, cyclo-oxygenase inhibitor).
CONCLUSIONIt is concluded that ACh-induced hyperpolarization in the arterial SMCs is primarily due to an activation of calcium-activated potassium channels via M3 receptors of endothelial cell and is independent of NO-release in the spiral modiolar artery.
Acetylcholine ; physiology ; Animals ; Arteries ; Cell Polarity ; physiology ; Cochlea ; blood supply ; physiology ; Guinea Pigs ; Membrane Potentials ; physiology ; Muscle, Smooth, Vascular ; metabolism ; physiology ; Nitric Oxide ; metabolism ; Potassium Channels, Calcium-Activated ; metabolism ; Receptor, Muscarinic M3 ; metabolism
5.Advances in the study of cardiac M3 receptor as a novel target of antiarrhythmic drugs.
Peng YUE ; Yan-jie LÜ ; Bao-feng YANG
Acta Pharmaceutica Sinica 2006;41(8):702-705
Animals
;
Delayed Rectifier Potassium Channels
;
physiology
;
Humans
;
Membrane Potentials
;
drug effects
;
Myocardial Ischemia
;
pathology
;
physiopathology
;
Pilocarpine
;
pharmacology
;
Piperidines
;
pharmacology
;
Receptor, Muscarinic M3
;
agonists
;
antagonists & inhibitors
;
physiology
;
Signal Transduction
;
drug effects
6.M3-R/IK(M3)--a new target of antiarrhythmic agents.
Yan LIU ; Chao-qian XU ; Jun-dong JIAO ; Hui-zhen WANG ; De-li DONG ; Bao-feng YANG
Acta Pharmaceutica Sinica 2005;40(1):8-12
AIMTo investigate the relationship between M3-R/IK(M3) and arrhythmia in order to find a new target for antiarrhythmic agents.
METHODSUsing the acute ischemic model of rats and patch-clamp techniques, the effects of the M3 receptor on the occurrence of arrhythmias and its possible mechanisms were studied.
RESULTSIn acute ischemic model of rats, the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine-methiodide (4DAMP) increased the occurrence of arrhythmias, and the M3 receptor agonist choline suppressed the onset and the development of arrhythmias (P < 0. 01). No change was observed after treatment with other receptor antagonists (M1, M2, and M4). With patch-clamp techniques, it was found that choline induced K+ current could be inhibited by 4DAMP. Antagonists toward M1, M2, and M4 receptors all failed to alter the current.
CONCLUSIONCholine modulates the cellular electrical properties of the heart, probably by activating a K+ current via stimulation of the M3 receptor. M3-R/IK(M3) may act as a new target for antiarrhythmic agents.
Animals ; Anti-Arrhythmia Agents ; Arrhythmias, Cardiac ; etiology ; physiopathology ; Cell Separation ; Choline ; pharmacology ; Guinea Pigs ; Heart Ventricles ; Male ; Myocytes, Cardiac ; drug effects ; physiology ; Piperidines ; Rats ; Rats, Wistar ; Receptor, Muscarinic M3 ; agonists ; antagonists & inhibitors
7.Involvement of M3 cholinergic receptor signal transduction pathway in regulation of the expression of chemokine MOB-1, MCP-1 genes in pancreatic acinar cells.
Hai ZHENG ; Daoda CHEN ; Jinghui ZHANG ; Yuan TIAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(2):140-157
Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-kappaB and the expression of chemokine MOB-1, MCP-lgenes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-kappaB was monitored by using electrophoretic mobility shift assay. The results showed that as compared with control group, M3 cholinergic receptor agonist (10(-3) mol/L, 10(-4) mol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10(-3) mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-kappaB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10(-3) mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10(-5) mol/L atropine) or NF-kappaB inhibitor (10(-2) mol/L PDTC) could obviously inhibit the activation of NF-kappaB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P<0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-lgenes in pancreatic acinar cells in vitro through the activation of NF-kappaB.
Adaptor Proteins, Signal Transducing
;
Carbachol
;
pharmacology
;
Carrier Proteins
;
biosynthesis
;
genetics
;
Chemokine CCL2
;
biosynthesis
;
genetics
;
Chemokines
;
biosynthesis
;
genetics
;
Humans
;
NF-kappa B
;
biosynthesis
;
genetics
;
Pancreas, Exocrine
;
metabolism
;
Pancreatitis
;
etiology
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Receptor, Muscarinic M3
;
agonists
;
physiology
;
Signal Transduction
8.Inhibition of ACh on the delayed rectifier-like potassium current in acutely isolated cerebral cortical neurons of rats.
Lan-Wei CUI ; Yu-Rong LI ; Lei YANG ; Shu-Wei JIA ; Li-Hui QU ; Kun YAO ; Hong-Bo JIN
Acta Physiologica Sinica 2006;58(1):58-64
The modulation of ACh on delayed rectifier-like potassium currents (I(K)) was studied in freshly dissociated cerebral cortical neurons using the whole-cell patch-clamp technique. Wistar rats between 10- and 14-day old of both sexes were used. After rats were decapitated, their brains were quickly removed, iced, and then manually cut into 400 mum slices. Slices were then incubated for 0.5 h at 32 degrees C in a buffered artificial cerebrospinal fluid (ACSF) bubbled with 95% O2, 5% CO2. Slices were then removed into buffered ACSF containing protease (0.5 mg/ml) at 32 degrees C. After 30 min of enzyme digestion, tissue was rinsed three times in the buffered saline. Then the enzyme-treated slices were mechanically dissociated with a graded series of fire-polished Pasteur pipettes. The cell suspension was then plated into a 35 mm dish and placed on the stage of a Olympus inverted microscope. For whole-cell recordings of currents, standard voltage-clamp techniques were used. Neurons were held at -80 mV, and the I(K) was evoked by 2 000 ms depolarizing voltage commands to potential between -40 mV and +60 mV in 10 mV steps applied at a frequency of 0.5 Hz. It was found that the inhibitory effect of ACh (0.1, 1, 10, 100 mumol/L) on I(K) was dose-dependent. It was also found that ACh affected the activation process of I(K) significantly, i.e., the activation curve of I(K) was characterized by half-activation potential of (-41.8+/-9.7) mV and a slope factor of (30.7+/-7.2) mV in the cortical neurons and they were changed to (-122.4+/-38.6) mV and (42.4+/-7.0) mV, respectively, after giving ACh (10 mumol/L). Tubocurarine (100 mumol/L) antagonized the inhibitory effect of ACh on I(K), and the drop of currents varied from the control value of (36.5+/-7..8)% to (16.9+/-13.8)% (n=8, P<0.01). 4-DAMP (10 mumol/L) blocked the inhibitory effect of ACh on I(K), and the currents reduced from the control value of (36.5+/-7.8)% to (26.8+/-4.7) % (n=6, P<0.05). Pirenzepin did not antagonize the inhibition of ACh on I(K) (n=7, P>0.05). Chelerythrine (20 mumol/L) blocked the inhibitory effect of ACh on I(K) and the currents reduced from the control value of (36.5+/-7.8)% to (11.7+/-17.3)% (n=6, P<0.05). On the contrary, PDBu (10 mumol/L) strengthened the inhibition of ACh on I(K) and the drop of currents changed from the control value of (36.5+/-7.8)% to (59.2+/-14.0)% (n=5, P<0.05). PDBu abolished the antagonism of chelerythrine on ACh in cortical neurons. It is suggested that the ACh-induced depolarization of neurons in the cortex is attributed to the inhibition of I(K) that is most likely evoked by the activation of nicotinic ACh receptors and muscarinic M3 receptor via protein kinase C (PKC) signal transduction pathway.
Acetylcholine
;
physiology
;
Animals
;
Cell Separation
;
Delayed Rectifier Potassium Channels
;
antagonists & inhibitors
;
Female
;
Male
;
Neurons
;
metabolism
;
physiology
;
Patch-Clamp Techniques
;
Protein Kinase C
;
metabolism
;
physiology
;
Rats
;
Rats, Wistar
;
Receptor, Muscarinic M3
;
metabolism
;
Receptors, Nicotinic
;
metabolism
;
Signal Transduction
;
physiology
;
Somatosensory Cortex
;
cytology
;
physiology