2.Endocannabinoids anandamide and its cannabinoid receptors in liver fibrosis after murine schistosomiasis.
Hongyan, LIU ; Xiao, GAO ; Ruixian, DUAN ; Qiao, YANG ; Yaowen, ZHANG ; Yongwei, CHENG ; Yan, GUO ; Wangxian, TANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2009;29(2):182-6
This study examined endogenous cannabinoid (ECB)-anandamide (AEA) and its cannabinoid receptors (CBR) in mice liver with the development of schistosoma japonicum. Mice were infected with schistosoma by means of pasting the cercaria onto their abdomens. Liver fibrosis was pathologically confirmed nine weeks after the infection. High performance liquid chromatography (HPLC) was employed to determine the concentration of AEA in the plasma of mice. Immunofluorescence was used to detect the expression of CBR1 and CBR2 in liver tissue. Morphological examination showed typical pathological changes, with worm tubercles of schistosoma deposited in the liver tissue, fibrosis around the worm tubercles and infiltration or soakage of inflammatory cells. Also, CBR1 and CBR2 were present in hepatocytes and hepatic sinusoids of the two groups, but they were obviously enhanced in the schistosoma-infected mice. However, the average optical density of CBR1 in the negative control and fibrosis group was 13.28+/-7.32 and 30.55+/-7.78, and CBR2 were 28.13+/-6.42 and 52.29+/-4.24 (P<0.05). The levels of AEA in the fibrosis group were significantly increased as compared with those of the control group. The concentrations of AEA were (0.37+/-0.07) and (5.67+/-1.34) ng/mL (P<0.05). It is concluded that the expression of endocannabinoids AEA and its cannabinoid receptor CBR were significantly increased in schistosoma-infected mice. Endogenous endocannabinoids may be involved in the development of schistosoma-induced liver fibrosis.
Arachidonic Acids/*metabolism
;
Endocannabinoids/*metabolism
;
Liver Cirrhosis/etiology
;
Liver Cirrhosis/*metabolism
;
Liver Cirrhosis/parasitology
;
Polyunsaturated Alkamides/*metabolism
;
Random Allocation
;
Receptor, Cannabinoid, CB1/*metabolism
;
Receptor, Cannabinoid, CB2/*metabolism
;
Schistosomiasis japonica/*complications
;
Schistosomiasis japonica/metabolism
3.Research progress of role of cannabinoid receptor in fibrosis.
Shanshan LI ; Linlin WANG ; Min LIU ; Yanling GAO ; Zhiling TIAN ; Shukun JIANG ; Miao ZHANG ; Dawei GUAN
Chinese Journal of Pathology 2014;43(2):136-138
Animals
;
Cannabinoid Receptor Antagonists
;
therapeutic use
;
Cannabinoids
;
pharmacology
;
Fibrosis
;
metabolism
;
Humans
;
Liver Cirrhosis
;
etiology
;
metabolism
;
therapy
;
Piperidines
;
therapeutic use
;
Pyrazoles
;
therapeutic use
;
Receptor, Cannabinoid, CB1
;
metabolism
;
Receptor, Cannabinoid, CB2
;
metabolism
;
Receptors, Cannabinoid
;
metabolism
;
Scleroderma, Diffuse
;
metabolism
;
Signal Transduction
;
drug effects
;
Skin
;
metabolism
;
Smad Proteins
;
metabolism
;
Transforming Growth Factor beta1
;
metabolism
4.No changes in densities of cannabinoid receptors in the superior temporal gyrus in schizophrenia.
Chao DENG ; Mei HAN ; Xu-Feng HUANG
Neuroscience Bulletin 2007;23(6):341-347
OBJECTIVEIn recent years, abnormal changes in the endocannabinoid system have been found in schizophrenia. The superior temporal gyrus (STG) is strongly implicated in the pathophysiology of schizophrenia, particularly with regards to auditory hallucinations. In this study, we investigated the binding density of cannabinoid CB1 receptors in the STG of schizophrenia patients compared to control subjects.
METHODSQuantitative autoradiography was used to investigate the binding densities of [(3)H]SR141716A (a selective antagonist) and [(3)H]CP-55940 (an agonist) to the CB1 receptors in the STG. Post-mortem brain tissue was obtained from the NSW Tissue Resource Centre (Australia).
RESULTSContrasting to previous findings in the alterations of CB1 receptor densities in the prefrontal, anterior and posterior cingulate cortex of schizophrenia, which were suggested to be associated to impairment of cognition function, no significant difference was found between the schizophrenia and control cases in both [(3)H]SR141716A and [(3)H]CP-55940 binding.
CONCLUSIONWe suggest that CB1 receptors in the STG are not involved in the pathology of schizophrenia and the auditory hallucination symptom of this disease.
Adult ; Aged ; Autoradiography ; Case-Control Studies ; Humans ; Middle Aged ; Receptor, Cannabinoid, CB1 ; agonists ; antagonists & inhibitors ; metabolism ; Reference Values ; Schizophrenia ; metabolism ; physiopathology ; Temporal Lobe ; metabolism
5.Cannabinoid receptor 1 expression and pathological changes in rat hippocampus after deprivation of rapid eye movement sleep.
Pei-fang JIANG ; Tao ZHU ; Zhe-zhi XIA
Journal of Zhejiang University. Medical sciences 2006;35(5):535-540
OBJECTIVETo observe the expression of cannabinoid receptor 1 (CB1R) mRNA and pathological changes in rat hippocampus after deprivation of rapid eye movement (REM) sleep.
METHODSTotally 42 Sprague-Dawley male rats were randomly divided into cage control (CC), tank control (TC) and the sleep deprivation groups (SD). The SD and TC rats were sacrificed at the end of 1 d, 3 d and 5 d sleep deprivation periods, respectively. The modified multiple platform methods were established for the REM sleep deprivation. CB1R mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR). The hippocampus sections of different stages were observed with electron microscope.
RESULTIn SD 1 d group, the expression of CB1R mRNA was significantly increased compared with the CC, TC, SD 3 d and SD 5 d groups (P <0.05) while in SD 3 d group it was reduced. The expression of CB1R mRNA of SD 5 d group was significantly higher than that of the SD 3 d group (P <0.05). Neuron apoptosis was found in SD 3 d and SD 5 d groups.
CONCLUSIONSleep deprivation can cause brain injury with the changes of CB1R mRNA expression.
Animals ; Hippocampus ; metabolism ; ultrastructure ; Male ; RNA, Messenger ; biosynthesis ; genetics ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 ; biosynthesis ; genetics ; Sleep Deprivation ; metabolism ; pathology ; Sleep, REM
6.Membrane cholesterol mediates the endocannabinoids-anandamide affection on HepG2 cells.
Wen-Jie WU ; Qiao YANG ; Qin-Fang CAO ; Yao-Wen ZHANG ; Yu-Jia XIA ; Xiao-Wen HU ; Wang-Xian TANG
Chinese Journal of Hepatology 2010;18(3):204-208
OBJECTIVETo study the effect of anandamide (AEA) on necrosis in HepG2 cells and to explore the role of AEA in progression of liver cancer.
METHODSLocalization of the fatty acid hydrolytic enzyme (FAAH), cannabinoid receptors 1(CB1) and cannabinoid receptors 2 (CB2) proteins was detected in L02 and HepG2 cells using immunofluorescence. L02 and HepG2 cells were treated with different concentrations of AEA and methyl-beta-cyclodextrin, and the rates of cells necrosis were examined by PI stain. Meanwhile, the expression levels of FAAH, CB1 and CB2 receptor proteins, as well as P38 mitogen-activated protein kinase (p-P38 MAPK) and c-Jun-NH2-terminal kinase (p-JNK) proteins, were analyzed by Western blot.
RESULTSThe FAAH, CB1 and CB2 receptor proteins were observed both in cytoplasm and on membrane in L02 and HepG2 cells. The expression level of FAAH protein was higher in HepG2 than in L02 cells. The expression level of CB1 receptor protein was very low in both L02 and HepG2 cells. The expression level of CB2 receptor protein was high in both L02 and HepG2 cells. AEA treatment induced necrosis in HepG2 cells but not in L02 cells. Methyl-beta-cyclodextrin treatment prevented necrosis in HepG2 cells (t = 3.702; 5.274; 3.503, P less than 0.05). The expression patterns of FAAH, CB1 and CB2 receptor protein in L02 and HepG2 cells were confirmed by western blot, which were consistent with the immunofluorescence results. AEA treatment increased the levels of p-P38MAPK and p-JNK proteins in a dose-dependent manner in HepG2 cells (F = 11.908; 26.054, P less than 0.05) and the increase can be partially by prevented by MCD (t = 2.801; t = 12.829, P less than 0.05).
CONCLUSIONAEA treatment induces necrosis in HepG2 cells via CB1 and CB2 receptors and lipid rafts.
Amidohydrolases ; metabolism ; Arachidonic Acids ; pharmacology ; Cannabinoid Receptor Modulators ; pharmacology ; Cholesterol ; metabolism ; Endocannabinoids ; Hep G2 Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Necrosis ; Polyunsaturated Alkamides ; pharmacology ; Receptor, Cannabinoid, CB1 ; metabolism ; Receptor, Cannabinoid, CB2 ; metabolism ; Signal Transduction ; beta-Cyclodextrins ; pharmacology ; p38 Mitogen-Activated Protein Kinases ; metabolism
7.Cannabinoid receptor 1 controls nerve growth in ectopic cyst in a rat endometriosis model.
Qianqian ZHAO ; Xizi LIANG ; Hongxiu HAN
Chinese Journal of Pathology 2014;43(12):827-830
OBJECTIVETo investigate whether cannabinoid receptor 1 (CB1R) is involved in nerve growth in endometriosis-associated ectopic cyst.
METHODSThe effect of CB1R agonist and antagonist on the expression of pan-neuronal marker protein gene product (PGP) 9.5 in ectopic cyst was examined by immunofluorescence and Western blot in endometriosis model of 18 rats.
RESULTSImmunofluorescence revealed that PGP 9.5 was expressed in the nerve fibers and was mainly distributed in the cyst hilum. Western blot revealed that the protein density of either PGP 9.5 (2 week: 0.38 ± 0.05; 4 week: 0.63 ± 0.03; 8 week: 0.80 ± 0.07, P < 0.01) or CB1R (2 week: 0.48 ± 0.04; 4 week: 0.68 ± 0.01; 8 week: 0.80 ± 0.03, P < 0.01) in the ectopic cyst increased with cyst size. In addition, compared to control group (0.75 ± 0.01), PGP 9.5 expression in the ectopic cyst was promoted by CB1R agonist ACPA (0.81 ± 0.01, P < 0.05), and inhibited by CB1R antagonist AM251 (0.67 ± 0.03, P < 0.01).
CONCLUSIONSCB1R was involved in the nerve growth of ectopic cyst associated with endometriosis.
Animals ; Blotting, Western ; Cysts ; metabolism ; Disease Models, Animal ; Endometriosis ; metabolism ; Female ; Peripheral Nerves ; growth & development ; metabolism ; Piperidines ; pharmacology ; Pyrazoles ; pharmacology ; Rats ; Receptor, Cannabinoid, CB1 ; antagonists & inhibitors ; physiology ; Ubiquitin Thiolesterase ; metabolism
8.Expression of cannabinoid receptor I during mice skin incised wound healing course.
Zhen-bin ZHAO ; Da-wei GUAN ; Wei-wei LIU ; Tao WANG ; Yan-yan FAN ; Zi-hui CHENG ; Ji-long ZHENG ; Geng-yi HU
Journal of Forensic Medicine 2010;26(4):241-245
OBJECTIVE:
To investigate the expression of cannabinoid receptor I (CB1R) during mice skin incised wound healing course and time-dependent changes of CB1R in wound age determination.
METHODS:
The changes of CBIR expression in skin incised wound were detected by immunohistochemistry and Western blotting.
RESULTS:
The control group showed a low expression of CB1R detected mainly in epidermis, hair follicles, sebaceous gland and dermomuscular layer. CB1R expression was undetectable in neutrophils in the wound specimens from 6h to 12h post-injury. CB1R positive cells were mostly mononuclear cells (MNCs) and fibroblastic cells (FBCs) from 1 d to 5 d post-injury. CB1R positive cells were mostly FBCs from 7 d to 14d post-injury. The ratio of the CB1R positive cells increased gradually in the wound specimens from 6 h to 3 d post-injury, reached peak level at 5 d, and then decreased gradually from 7d to 14 d post-injury. The positive bands of CB1R were observed in all time points of the wound healing course by Western blotting. The expression peak showed at 5 d post-injury.
CONCLUSION
CB1R is activated during the wound healing course. The expression of CB1R is found in mononuclear cells, which could be involved in inflammation reaction. CBIR is observed in fibroblastic cells, which could participate in the wound healing. CB1R may be a potentially useful marker for determination of wound healing age.
Animals
;
Blotting, Western
;
Disease Models, Animal
;
Fibroblasts/metabolism*
;
Forensic Pathology
;
Immunohistochemistry
;
Male
;
Mice
;
Monocytes/metabolism*
;
Random Allocation
;
Receptor, Cannabinoid, CB1/metabolism*
;
Skin/metabolism*
;
Staining and Labeling
;
Time Factors
;
Wound Healing
;
Wounds and Injuries/pathology*
9.CB1 cannabinoid receptor participates in the vascular hyporeactivity resulting from hemorrhagic shock in rats.
Li-chao HOU ; Nan LI ; Li-na ZHENG ; Yan LU ; Ke-liang XIE ; Yue-min WANG ; Gen-lin JI ; Li-ze XIONG
Chinese Medical Journal 2009;122(8):950-954
BACKGROUNDVascular hyporeactivity, which occurs in the terminal stage of hemorrhagic shock, is believed to be critical for treating hemorrhagic shock. The present study was designed to examine whether the CB1 cannabinoid receptor (CB1R) was involved in the development of vascular hyporeactivity in rats suffering from hemorrhagic shock.
METHODSSixteen animals were randomly divided into two groups (n = 8 in each group): sham-operated (Sham) and hemorrhagic shock (HS) groups. Hemorrhagic shock was induced by bleeding. The mean arterial pressure (MAP) was reduced to and stabilized at (25 +/- 5) mmHg for 2 hours. The vascular reactivity was determined by the response of MAP to norepinephrine (NE). In later experiments another twelve animals were used in which the changes of CB1R mRNA and protein in aorta and superior mesenteric artery (SMA) were analyzed by RT-PCR and Western blotting. In addition, we investigated the effects of a CB1R antagonist on the vascular hyporeactivity and survival rates in rats with hemorrhagic shock. Survival rates were analyzed by the Fisher's exact probability test. The MAP response was analyzed by one-way analysis of variance (ANOVA).
RESULTSVascular hyporeactivity developed in all animals suffering from hemorrhagic shock. The expression of CB1R mRNA and protein in aorta and 2 - 3 branches of the SMA were significantly increased in the HS group after the development of vascular hyporeactivity when compared to those in Sham group. When SR141716A or AM251 was administered, the MAP response to NE was (41.75 +/- 4.08) mmHg or (44.78 +/- 1.80) mmHg respectively, which was higher than that in saline groups with (4.31 +/- 0.36) mmHg (P < 0.01). We also showed an increased 4-hour survival rate in the SR141716A or AM251-treated group with 20% or 30%, but with a statistically significant difference present between the AM251-treated and saline groups (P < 0.05).
CONCLUSIONSCB1R is involved in vascular hyporeactivity resulting from hemorrhagic shock in rats, and CB1R antagonist may be useful in treating patients with traumatic, hemorrhagic shock who need field-rescue or initial treatment.
Animals ; Blotting, Western ; Gene Expression Regulation ; drug effects ; Hypotension ; metabolism ; Male ; Piperidines ; pharmacology ; Pyrazoles ; pharmacology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptor, Cannabinoid, CB1 ; antagonists & inhibitors ; genetics ; metabolism ; physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Shock, Hemorrhagic ; metabolism ; mortality ; Survival Rate
10.Anandamide inhibits the growth of colorectal cancer cells through CB1 and lipid rafts.
Yu-Sheng LIAO ; Jie WU ; Ping WANG ; Heng ZHANG
Chinese Journal of Oncology 2011;33(4):256-259
OBJECTIVETo study the influences of endocannabinoid-anandamide (AEA) on the proliferation and apoptosis of the colorectal cancer cell line (CaCo-2) and to elucidate the effects of CB1 and lipid rafts, and to further elucidate the molecular mechanism and the effect of AEA on the generation and development of colorectal cancer.
METHODSHuman colorectal cancer cell line CaCo-2 was cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum in 5% CO(2) atmosphere at 37°C. CaCo-2 cells were divided into different groups and treated with different concentrations of AEA, AEA + SR141716A, AEA + AM630 and AEA + methyl-β-cyclodextrin (MCD). MTT assay was used to determine the effects of AEA, its putative CB1, CB2 receptor antagonists (SR141716A and AM630) and MCD on the proliferation of CaCo-2 cells. Annexin V-PE/7AAD binding assay was used to detect apoptosis in the CaCo-2 cells. Western-blot was applied to check the expressions of CB1, CB2, p-AKT and caspase-3 proteins in different groups of CaCo-2 cells.
RESULTSAEA inhibited the proliferation of CaCo-2 cells in a concentration-dependent manner and the effect could be antagonized by SR141716A and MCD. The inhibiting rates were (21.52 ± 0.45)%, (42.16 ± 0.21)%, (73.64 ± 0.73)% and (83.28 ± 0.71)%, respectively, at different concentrations of AEA (5, 10, 20 and 40 µmol/L). The three groups (20 µmol/L AEA, 20 µmol/L AEA + 10 µmol/L SR141716A and 20 µmol/L AEA + 1 mmol/L MCD) showed different inhibiting rates [(73.64 ± 0.73)%, (16.15 ± 0.75)% and (12.58 ± 0.63)%], respectively. Annexin V-PE/7AAD binding assay showed that AEA induced apoptosis in the CaCo-2 cells and MCD could antagonize this effect. The apoptosis rates of the three groups (control, 20 µmol/L AEA and 20 µmol/L AEA + 1 mmol/L MCD) were (2.95 ± 0.73)%, (39.61 ± 0.73)% and (14.10 ± 0.64)%, respectively. The expressions of CB1, CB2, p-AKT and Caspase-3 proteins were all observed in the CaCo-2 cells. AEA inhibited p-AKT protein expression and induced caspase-3 protein expression. The two actions were also antagonized by MCD.
CONCLUSIONSAEA can strongly suppress the proliferation of colorectal cancer CaCo-2 cells via the CB1 receptor and membrane cholesterol-LRs and induce apoptosis via lipid rafts. Anandamide plays a very important role in the carcinogenesis and development of colorectal cancer. MCD is a critical member in this system.
Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Arachidonic Acids ; antagonists & inhibitors ; pharmacology ; Caco-2 Cells ; Cannabinoid Receptor Modulators ; antagonists & inhibitors ; pharmacology ; Caspase 3 ; metabolism ; Cell Proliferation ; drug effects ; Dose-Response Relationship, Drug ; Endocannabinoids ; Humans ; Indoles ; pharmacology ; Membrane Microdomains ; metabolism ; Piperidines ; pharmacology ; Polyunsaturated Alkamides ; antagonists & inhibitors ; pharmacology ; Proto-Oncogene Proteins c-akt ; metabolism ; Pyrazoles ; pharmacology ; Receptor, Cannabinoid, CB1 ; antagonists & inhibitors ; metabolism ; Receptor, Cannabinoid, CB2 ; antagonists & inhibitors ; metabolism ; beta-Cyclodextrins ; metabolism