1.Effects of interleukin-4-modified gold nanozymes on the full-thickness skin defects in diabetic mice.
Meng Yun YAO ; Ning ZHANG ; Qing ZHANG ; Yi Fei LU ; Yong HUANG ; Deng Feng HE ; Yun Xia CHEN ; Gao Xing LUO
Chinese Journal of Burns 2023;39(1):15-24
Objective: To investigate the effects and mechanism of interleukin-4-modified gold nanoparticle (IL-4-AuNP) on the wound healing of full-thickness skin defects in diabetic mice. Methods: Experimental research methods were adopted. Gold nanoparticle (AuNP) and IL-4-AuNP were synthesized by improving the methods described in published literature. The morphology of those two particles were photographed by transmission electron microscopy, and their particle sizes were calculated. The surface potential and hydration particle size of the two particles were detected by nanoparticle potentiometer and particle size analyzer, respectively. The clearance rate of IL-4-AuNP to hydrogen peroxide and superoxide anion was measured by hydrogen peroxide and superoxide anion kits, respectively. Mouse fibroblast line 3T3 cells were used and divided into the following groups by the random number table (the same below): blank control group, hydrogen peroxide alone group treated with hydrogen peroxide only, hydrogen peroxide+IL-4-AuNP group treated with IL-4-AuNP for 0.5 h and then treated with hydrogen peroxide. After 24 h of culture, the reactive oxygen species (ROS) levels of cells were detected by immunofluorescence method; cell count kit 8 was used to detect relative cell survival rate. The macrophage Raw264.7 mouse cells were then used and divided into blank control group and IL-4-AuNP group that treated with IL-4-AuNP. After 24 h of culture, the expression of arginase 1 (Arg-1) in cells was observed by immunofluorescence method. Twelve male BALB/c mice (mouse age, sex, and strain, the same below) aged 8 to 10 weeks were divided into IL-4-AuNP group and blank control group, treated accordingly. On the 16th day of treatment, whole blood samples were collected from mice for analysis of white blood cell count (WBC), red blood cell count (RBC), hemoglobin level, or platelet count and the level of aspartate aminotransferase (AST), alanine transaminase (ALT), urea, or creatinine. The inflammation, bleeding, or necrosis in the heart, liver, spleen, lung, and kidney tissue of mice were detected by hematoxylin-eosin (HE). Another 36 mice were selected to make diabetic model, and the full-thickness skin defect wounds were made on the back of these mice. The wounds were divided into blank control group, AuNP alone group, and IL-4-AuNP group, with 12 mice in each group, and treated accordingly. On the 0 (immediately), 4th, 9th, and 15th day of treatment, the wound condition was observed and the wound area was calculated. On the 9th day of treatment, HE staining was used to detect the length of neonatal epithelium and the thickness of granulation tissue in the wound. On the 15th day of treatment, immunofluorescence method was used to detect ROS level and the number of Arg-1 positive cells in the wound tissue. The number of samples was 6 in all cases. Data were statistically analyzed with independent sample t test, corrected t test, Tukey test, or Dunnett T3 test. Results: The size of prepared AuNP and IL-4-AuNP were uniform. The particle size, surface potential, and hydration particle size of AuNP and IL-4-AuNP were (13.0±2.1) and (13.9±2.5) nm, (-45.8±3.2) and (-20.3±2.2) mV, (14±3) and (16±4) nm, respectively. For IL-4-AuNP, the clearance rate to hydrogen peroxide and superoxide anion were (69±4)% and (52±5)%, respectively. After 24 h of culture, the ROS level of 3T3 in hydrogen peroxide alone group was significantly higher than that in blank control group (q=26.12, P<0.05); the ROS level of hydrogen peroxide+IL-4-AuNP group was significantly lower than that in hydrogen peroxide alone group (q=25.12, P<0.05) and close to that in blank control group (P>0.05). After 24 h of culture, the relative survival rate of 3T3 cells in hydrogen peroxide+IL-4-AuNP group was significantly higher than that in hydrogen peroxide alone group (t=51.44, P<0.05). After 24 h of culture, Arg-1 expression of Raw264.7 cells in IL-4-AuNP group was significantly higher than that in blank control group (t'=8.83, P<0.05).On the 16th day of treatment, there were no significant statistically differences in WBC, RBC, hemoglobin level, or platelet count and the level of AST, ALT, urea, or creatinine of mice between blank control group and IL-4-AuNP group (P>0.05). No obvious inflammation, bleeding or necrosis was observed in the heart, liver, spleen, lung, and kidney of important organs in IL-4-AuNP group, and no significant changes were observed compared with blank control group. On the 0 and 4th day of treatment, the wound area of diabetic mice in blank control group, AuNP alone group, and IL-4-AuNP group had no significant difference (P>0.05). On the 9th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 9.45 and 14.87, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=5.42, P<0.05). On the 15th day of treatment, the wound areas both in AuNP alone group and IL-4-AuNP group were significantly smaller than that in blank control group (with q values of 4.84 and 20.64, respectively, P<0.05), the wound area in IL-4-AuNP group was significantly smaller than that in AuNP alone group (q=15.80, P<0.05); moreover, inflammations such as redness and swelling were significantly reduced in IL-4-AuNP group compared with the other two groups. On the 9th day of treatment, compared with blank control group and AuNP alone group, the length of neonatal epithelium in the wound of diabetic mice in IL-4-AuNP group was significantly longer (all P<0.05), and the thickness of the granulation tissue in the wound was significantly increased (with q values of 11.33 and 9.65, respectively, all P<0.05). On the 15th day of treatment, compared with blank control group, ROS levels in wound tissue of diabetic mice in AuNP alone group and IL-4-AuNP group were significantly decreased (P<0.05). On the 15th day of treatment, the number of Arg-1 positive cells in the wounds of diabetic mice in IL-4-AuNP group was significantly more than that in blank control group and AuNP alone group, respectively (all P<0.05). Conclusions: IL-4-AuNP is safe in vivo, and can improve the oxidative microenvironment by removing ROS and induce macrophage polarization towards M2 phenotype, thus promote efficient diabetic wound healing and regeneration of full-thickness skin defects in diabetic mice.
Mice
;
Male
;
Animals
;
Interleukin-4
;
Gold/pharmacology*
;
Diabetes Mellitus, Experimental
;
Creatinine
;
Hydrogen Peroxide
;
Reactive Oxygen Species
;
Superoxides
;
Metal Nanoparticles
;
Soft Tissue Injuries
;
Antibodies
;
Inflammation
;
Necrosis
;
Hemoglobins
2.Flavonoid-Rich Extract of Oldenlandia diffusa (Willd.) Roxb. Inhibits Gastric Cancer by Activation of Caspase-Dependent Mitochondrial Apoptosis.
Jia-Yin LING ; Qiu-Lan WANG ; Hao-Nan LIANG ; Qing-Bo LIU ; Dong-Hong YIN ; Li LIN
Chinese journal of integrative medicine 2023;29(3):213-223
OBJECTIVE:
To evaluate the apoptosis and cycle arrest effects of Oldenlandia diffusa flavonoids on human gastric cancer cells, determine the action mechanisms in association with the mitochondrial dependent signal transduction pathway that controls production of reactive oxygen species (ROS), and evaluate the pharmacodynamics of a mouse xenotransplantation model to provide a reference for the use of flavonoids in prevention and treatment of gastric cancer.
METHODS:
Flavonoids were extracted by an enzymatic-ultrasonic assisted method and purified with D-101 resin. Bioactive components were characterized by high-performance liquid chromatography. Cell lines MKN-45, AGS, and GES-1 were treated with different concentrations of flavonoids (64, 96, 128, 160 µg/mL). The effect of flavonoids on cell viability was evaluated by MTT method, and cell nuclear morphology was observed by Hoechst staining. The apoptosis rate and cell cycle phases were measured by flow cytometry, the production of ROS was detected by laser confocal microscope, the mitochondrial membrane potential (MMP) were observed by fluorescence microscope, and the expression of apoptotic proteins related to activation of mitochondrial pathway were measured by immunoblotting. MKN-45 cells were transplanted into BALB/c nude mice to establish a xenograft tumor model. Hematoxylin and eosin staining was used to reveal the subcutaneous tumor tissue. The tumor volume and tumor weight were measured, the expression levels of proliferation markers proliferating cell nuclear antigen (PCNA) and Ki-67 were detected by immunohistochemistry, and the expression levels of CA72-4 were measured by enzyme linked immunosorbent assay.
RESULTS:
Oldenlandia diffusa flavonoids inhibited proliferation of MKN-45 and AGS human gastric cancer cells, arrested the cell cycle in G1/S phase, induced accumulation of ROS in the process of apoptosis, and altered MMP. In addition, flavonoids increased Apaf-1, Cleaved-Caspase-3, and Bax, and decreased Cyclin A, Cdk2, Bcl-2, Pro-Caspase-9, and Mitochondrial Cytochrome C (P<0.05). The MKN-45 cell mouse xenotransplantation model further clarified the growth inhibitory effect of flavonoids towards tumors. The expression levels of PCNA and Ki-67 decreased in each flavonoid dose group, the expression level of CA72-4 decreased (P<0.05).
CONCLUSION
Flavonoids derived from Oldenlandia diffusa can inhibit proliferation and induce apoptosis of human gastric cancer cells by activating the mitochondrial controlled signal transduction pathway.
Humans
;
Animals
;
Mice
;
Oldenlandia/metabolism*
;
Proliferating Cell Nuclear Antigen
;
Stomach Neoplasms
;
Flavonoids/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Mice, Nude
;
Ki-67 Antigen
;
Cell Line, Tumor
;
Apoptosis
;
Plant Extracts/pharmacology*
;
Caspases
;
Cell Proliferation
3.Nuclear factor-Y mediates pancreatic β-cell compensation by repressing reactive oxygen species-induced apoptosis under metabolic stress.
Siyuan HE ; Xiaoqian YU ; Daxin CUI ; Yin LIU ; Shanshan YANG ; Hongmei ZHANG ; Wanxin HU ; Zhiguang SU
Chinese Medical Journal 2023;136(8):922-932
BACKGROUND:
Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear.
METHODS:
In this study, using obese ( ob/ob ) mice with an absence of NF-Y subunit A (NF-YA) in β-cells ( ob , Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress.
RESULTS:
Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment.
CONCLUSION
Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.
Rats
;
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Insulin Resistance
;
Insulin
;
Insulin-Secreting Cells/metabolism*
;
Apoptosis
;
Stress, Physiological
;
Transcription Factors/metabolism*
;
Palmitates/pharmacology*
;
Obesity/metabolism*
4.Synergistic effect of β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli in vitro.
Muchen ZHANG ; Huangwei SONG ; Zhiyu ZOU ; Siyuan YANG ; Hui LI ; Chongshan DAI ; Dejun LIU ; Bing SHAO ; Congming WU ; Jianzhong SHEN ; Yang WANG
Chinese Journal of Biotechnology 2023;39(4):1621-1632
The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.
Humans
;
Tigecycline/pharmacology*
;
Escherichia coli/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Plasmids
;
Anti-Bacterial Agents/metabolism*
;
Escherichia coli Infections/microbiology*
;
Bacteria/genetics*
;
Microbial Sensitivity Tests
5.PPAR-γ activation promotes xenogenic bioroot regeneration by attenuating the xenograft induced-oxidative stress.
Tingting LAN ; Fei BI ; Yuchan XU ; Xiaoli YIN ; Jie CHEN ; Xue HAN ; Weihua GUO
International Journal of Oral Science 2023;15(1):10-10
Xenogenic organ transplantation has been considered the most promising strategy in providing possible substitutes with the physiological function of the failing organs as well as solving the problem of insufficient donor sources. However, the xenograft, suffered from immune rejection and ischemia-reperfusion injury (IRI), causes massive reactive oxygen species (ROS) expression and the subsequent cell apoptosis, leading to the xenograft failure. Our previous study found a positive role of PPAR-γ in anti-inflammation through its immunomodulation effects, which inspires us to apply PPAR-γ agonist rosiglitazone (RSG) to address survival issue of xenograft with the potential to eliminate the excessive ROS. In this study, xenogenic bioroot was constructed by wrapping the dental follicle cells (DFC) with porcine extracellular matrix (pECM). The hydrogen peroxide (H2O2)-induced DFC was pretreated with RSG to observe its protection on the damaged biological function. Immunoflourescence staining and transmission electron microscope were used to detect the intracellular ROS level. SD rat orthotopic transplantation model and superoxide dismutase 1 (SOD1) knockout mice subcutaneous transplantation model were applied to explore the regenerative outcome of the xenograft. It showed that RSG pretreatment significantly reduced the adverse effects of H2O2 on DFC with decreased intracellular ROS expression and alleviated mitochondrial damage. In vivo results confirmed RSG administration substantially enhanced the host's antioxidant capacity with reduced osteoclasts formation and increased periodontal ligament-like tissue regeneration efficiency, maximumly maintaining the xenograft function. We considered that RSG preconditioning could preserve the biological properties of the transplanted stem cells under oxidative stress (OS) microenvironment and promote organ regeneration by attenuating the inflammatory reaction and OS injury.
Mice
;
Humans
;
Rats
;
Animals
;
Swine
;
PPAR gamma/pharmacology*
;
Reactive Oxygen Species/pharmacology*
;
Heterografts
;
Hydrogen Peroxide/pharmacology*
;
Rats, Sprague-Dawley
;
Rosiglitazone/pharmacology*
;
Oxidative Stress
6.In vitro and in vivo anticancer potential and molecular targets of the new colchicine analog IIIM-067.
Sumera MALIK ; Mubashir J MINTOO ; Chilakala Nagarjuna REDDY ; Rajesh KUMAR ; Pankul KOTWAL ; Sandip B BHARATE ; Utpal NANDI ; Dilip M MONDHE ; Sanket K SHUKLA
Journal of Integrative Medicine 2023;21(1):62-76
OBJECTIVE:
The current study evaluated various new colchicine analogs for their anticancer activity and to study the primary mechanism of apoptosis and in vivo antitumor activity of the analogs with selective anticancer properties and minimal toxicity to normal cells.
METHODS:
Sulforhodamine B (SRB) assay was used to screen various colchicine analogs for their in vitro cytotoxicity. The effect of N-[(7S)-1,2,3-trimethoxy-9-oxo-10-(pyrrolidine-1-yl)5,6,7,9-tetrahydrobenzo[a] heptalene-7-yl] acetamide (IIIM-067) on clonogenicity, apoptotic induction, and invasiveness of A549 cells was determined using a clonogenic assay, scratch assay, and staining with 4',6-diamidino-2-phenylindole (DAPI) and annexin V/propidium iodide. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels were observed using fluorescence microscopy. Western blot analysis was used to quantify expression of proteins involved in apoptosis, cell cycle, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Pharmacokinetic and in vivo efficacy studies against Ehrlich ascites carcinoma (EAC) and Ehrlich solid tumor models were conducted using Swiss albino mice.
RESULTS:
IIIM-067 showed potent cytotoxicity and better selectivity than all other colchicine analogs screened in this study. The selective activity of IIIM-067 toward A549 cells was higher among other cancer cell lines, with a selectivity index (SI) value of 2.28. IIIM-067 demonstrated concentration- and time-dependent cytotoxicity against A549 cells with half-maximal inhibitory concentration values of 0.207, 0.150 and 0.106 μmol/L at 24, 48 and 72 h, respectively. It also had reduced toxicity to normal cells (SI > 1) than the parent compound colchicine (SI = 1). IIIM-067 reduced the clonogenic ability of A549 cells in a dose-dependent manner. IIIM-067 enhanced ROS production from 24.6% at 0.05 μmol/L to 82.1% at 0.4 μmol/L and substantially decreased the MMP (100% in control to 5.6% at 0.4 μmol/L). The annexin V-FITC assay demonstrated 78% apoptosis at 0.4 μmol/L. IIIM-067 significantly (P < 0.5) induced the expression of various intrinsic apoptotic pathway proteins, and it differentially regulated the PI3K/AKT/mTOR signaling pathway. Furthermore, IIIM-067 exhibited remarkable in vivo anticancer activity against the murine EAC model, with tumor growth inhibition (TGI) of 67.0% at a dose of 6 mg/kg (i.p.) and a reduced mortality compared to colchicine. IIIM-067 also effectively inhibited the tumor growth in the murine solid tumor model with TGI rates of 48.10%, 55.68% and 44.00% at doses of 5 mg/kg (i.p.), 6 mg/kg (i.p.) and 7 mg/kg (p.o.), respectively.
CONCLUSION
IIIM-067 exhibited significant anticancer activity with reduced toxicity both in vitro and in vivo and is a promising anticancer candidate. However, further studies are required in clinical settings to fully understand its potential.
Animals
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Antineoplastic Agents, Phytogenic/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Reactive Oxygen Species/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Colchicine/pharmacology*
;
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Mammals/metabolism*
7.Mechanism of Qilongtian Capsules in treatment of acute lung injury based on network pharmacology prediction and experimental validation.
Ying XIE ; Xue-Rong SU ; Tong ZHOU ; Yi-Yao LIANG ; Yang-Qian WU ; Yi WAN ; Tu-Lin LU ; Xiao-Li ZHAO ; Zheng-Yan LI
China Journal of Chinese Materia Medica 2023;48(15):4187-4200
This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1β, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1β, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.
Humans
;
Tumor Necrosis Factor-alpha
;
Ginsenosides
;
Caspase 3
;
Matrix Metalloproteinase 9
;
Interleukin-6
;
Molecular Docking Simulation
;
Network Pharmacology
;
Reactive Oxygen Species
;
Tandem Mass Spectrometry
;
Acute Lung Injury/genetics*
;
Capsules
;
RNA, Messenger
;
Drugs, Chinese Herbal/pharmacology*
8.Muscone inhibits opening of mPTP to alleviate OGD/R-induced injury of HT22 cells.
Ping HUANG ; Mei-Ling YUAN ; Lei WANG ; Yu-Ang CHEN ; Ning WANG ; Si-Peng WU
China Journal of Chinese Materia Medica 2023;48(22):6154-6163
This study aims to investigate the mechanism of muscone in inhibiting the opening of mitochondrial permeability transition pore(mPTP) to alleviate the oxygen and glucose deprivation/reoxygenation(OGD/R)-induced injury of mouse hippocampal neurons(HT22). An in vitro model of HT22 cells injured by OGD/R was established. CCK-8 assay was employed to examine the viability of HT22 cells, fluorescence microscopy to measure the mitochondrial membrane potential, the content of reactive oxygen species(ROS), and the opening of mPTP in HT22 cells. Enzyme-linked immunosorbent assay was employed to determine the level of ATP and the content of cytochrome C(Cyt C) in mitochondria of HT22 cells. Flow cytometry was employed to determine the Ca~(2+) content and apoptosis of HT22 cells. The expression of Bcl-2(B-cell lymphoma-2) and Bcl-2-associated X protein(Bax) was measured by Western blot. Molecular docking and Western blot were employed to examine the binding between muscone and methyl ethyl ketone(MEK) after pronase hydrolysis of HT22 cell proteins. After the HT22 cells were treated with U0126, an inhibitor of MEK, the expression levels of MEK, p-ERK, and CypD were measured by Western blot. The results showed that compared with the OGD/R model group, muscone significantly increased the viability, mitochondrial ATP activity, and mitochondrial membrane potential, lowered the levels of ROS, Cyt C, and Ca~(2+), and reduced mPTP opening to inhibit the apoptosis of HT22 cells. In addition, muscone up-regulated the expression of MEK, p-ERK, and down-regulated that of CypD. Molecular docking showed strong binding activity between muscone and MEK. In conclusion, muscone inhibits the opening of mPTP to inhibit apoptosis, thus exerting a protective effect on OGD/R-injured HT22 cells, which is associated with the activation of MEK/ERK/CypD signaling pathway.
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Molecular Docking Simulation
;
Apoptosis
;
Oxygen
;
Adenosine Triphosphate/pharmacology*
;
Mitogen-Activated Protein Kinase Kinases/pharmacology*
;
Glucose/metabolism*
9.Protective effect of borneol on the cutaneous toxicity of gilteritinib.
Yourong ZHOU ; Yiming YIN ; Xiangliang HUANG ; Yuhuai HU ; Qiaojun HE
Journal of Zhejiang University. Medical sciences 2023;52(5):544-557
OBJECTIVES:
To investigate the effect of borneol on cutaneous toxicity of gilteritinib and to explore possible compounds that can intervene with the cutaneous toxicity.
METHODS:
C57BL/6J male mice were given gilteritinib by continuous gavage for 28 d and the damage to keratinocytes in the skin tissues was observed with hematoxylin and eosin (HE) staining, TUNEL assay and immunohistochemistry. Human keratinocytes HaCaT were treated with gilteritinib, and cell death and morphological changes were examined by SRB staining and microscopy; apoptosis of HaCaT cells was examined by Western blotting, flow cytometry with propidium iodide/AnnexinⅤ double staining and immunofluorescence; the accumulation of cellular reactive oxygen species (ROS) was examined by flow cytometry with DCFH-DA. Compounds that can effectively intervene the cutaneous toxicity of gilteritinib were screened from a natural compound library using SRB method, and the intervention effect of borneol on gilteritinib cutaneous toxicity was further investigated in HaCaT cells and C57BL/6J male mice.
RESULTS:
In vivo studies showed pathological changes in the skin with apoptosis of keratinocytes in the stratum spinosum and stratum granulosum in the modeling group. Invitro studies showed apoptosis of HaCaT cells, significant up-regulation of cleaved poly (ADP-ribose) polymerase (c-PARP) and gamma-H2A histone family member X (γ-H2AX) levels, and increased accumulation of ROS in gilteritinib-modeled skin keratinocytes compared with controls. Screening of the natural compound library revealed that borneol showed excellent intervention effects on the death of HaCaT cells. In vitro, cell apoptosis was significantly reduced in the borneol+gilteritinib group compared to the gilteritinib control group. The levels of c-PARP, γ-H2AX and ROS in cells were significantly decreased. In vivo, borneol alleviated gilteritinib-induced skin pathological changes and skin cell apoptosis in mice.
CONCLUSIONS
Gilteritinib induces keratinocytes apoptosis by causing intracellular ROS accumulation, resulting in cutaneous toxicity. Borneol can ameliorate the cutaneous toxicity of gilteritinib by reducing the accumulation of ROS and apoptosis of keratinocytes in the skin tissue.
Male
;
Humans
;
Animals
;
Mice
;
Reactive Oxygen Species/metabolism*
;
Poly(ADP-ribose) Polymerase Inhibitors/pharmacology*
;
Mice, Inbred C57BL
;
Apoptosis
;
Poly(ADP-ribose) Polymerases/metabolism*
10.Effect of Baicalin on Pyroptosis of Diffuse Large B-Cell Lymphoma Cell Lines DB and Its Mechanism.
Ming LU ; Chun-Ling HE ; Zhen-Tian WU ; Yao LYU ; Xiao-Hui DUAN ; Bing-Xuan WANG ; Shi-Xiong WANG ; Jian-Hong WANG ; Rong LIANG
Journal of Experimental Hematology 2023;31(6):1706-1713
OBJECTIVE:
To investigate the effect of Baicalin on the proliferation and pyroptosis of diffuse large B-cell lymphoma cell line DB and its mechanism.
METHODS:
DB cells were treated with baicalin at different concentrations (0, 5, 10, 20, 40 μmol/L). Cell proliferation was detected by CCK-8 assay and half maximal inhibitory concentration (IC50) was calculated. The morphology of pyroptosis was observed under an inverted microscope, the integrity of the cell membrane was verified by LDH content release assay, and the expressions of pyroptosis-related mRNA and protein (NLRP3, GSDMD, GSDME, N-GSDMD, N-GSDME) were detected by real-time fluorescence quantitative PCR and Western blot. In order to further clarify the relationship between baicalin-induced pyroptosis and ROS production in DB cells, DB cells were divided into control group, baicalin group, NAC group and NAC combined with baicalin group. DB cells in the NAC group were pretreated with ROS inhibitor N-acetylcysteine (NAC) 2 mmol/L for 2 h. Baicalin was added to the combined treatment group after pretreatment, and the content of reactive oxygen species (ROS) in the cells was detected by DCFH-DA method after 48 hours of culture.
RESULTS:
Baicalin inhibited the proliferation of DB cells in a dose-dependent manner (r=-0.99), and the IC50 was 20.56 μmol/L at 48 h. The morphological changes of pyroptosis in DB cells were observed under inverted microscope. Compared with the control group, the release of LDH in the baicalin group was significantly increased (P<0.01), indicating the loss of cell membrane integrity. Baicalin dose-dependently increased the expression levels of NLRP3, N-GSDMD, and N-GSDME mRNA and protein in the pyroptosis pathway (P<0.05). Compared with the control group, the level of ROS in the baicalin group was significantly increased (P<0.05), and the content of ROS in the NAC group was significantly decreased (P<0.05). Compared with the NAC group, the content of ROS in the NAC + baicalin group was increased. Baicalin significantly attenuated the inhibitory effect of NAC on ROS production (P<0.05). Similarly, Western blot results showed that compared with the control group, the expression levels of pyroptosis-related proteins was increased in the baicalin group (P<0.05). NAC inhibited the expression of NLRP3 and reduced the cleavage of N-GSDMD and N-GSDME (P<0.05). Compared with the NAC group, the NAC + baicalin group had significantly increased expression of pyroptosis-related proteins. These results indicate that baicalin can effectively induce pyroptosis in DB cells and reverse the inhibitory effect of NAC on ROS production.
CONCLUSION
Baicalin can inhibit the proliferation of DLBCL cell line DB, and its mechanism may be through regulating ROS production to affect the pyroptosis pathway.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/pharmacology*
;
Pyroptosis
;
Cell Line
;
RNA, Messenger
;
Lymphoma, Large B-Cell, Diffuse

Result Analysis
Print
Save
E-mail