1.Attenuation of Oxidative Stress-Induced Cell Apoptosis and Pyroptosis in RSC96 Cells by Salvianolic Acid B.
Qian-Qian WANG ; Meng WANG ; Yan LI ; Yong-Hui LIU ; Lian-Qing SUN
Chinese journal of integrative medicine 2022;28(3):243-248
OBJECTIVE:
To determine whether salvianolic acid B (Sal B) exerts protective effects on diabetic peripheral neuropathy by attenuating apoptosis and pyroptosis.
METHODS:
RSC96 cells were primarily cultured with DMEM (5.6 mmol/L glucose), hyperglycemia (HG, 125 mmol/L glucose) and Sal B (0.1, 1, and 10 µ mol/L). Cells proliferation was measured by 3-(4, 5-cimethylthiazol-2-yl)-2, 5-dilphenyltetrazolium bromide assay. Reactive oxygen species (ROS) generation and apoptosis rate were detected by flow cytometry analysis. Western blot was performed to analyze the expressions of poly ADP-ribose polymerase (PARP), cleaved-caspase 3, cleaved-caspase 9, Bcl-2, Bax, NLRP3, ASC, and interleukin (IL)-1β.
RESULTS:
Treatment with HG at a concentration of 125 mmol/L attenuated cellular proliferation, while Sal B alleviated this injury (P<0.05). In addition, Sal B inhibited HG-induced ROS production and apoptosis rate (P<0.05). Furthermore, treatment with Sal B down-regulated HG-induced PARP, cleaved-caspase 3, cleaved-caspase 9, Bax, NLRP3, ASC, and IL-1β expression, but mitigated HG-mediated down-regulation of Bcl-2 expression (P<0.05).
CONCLUSION
Sal B may protect RSC96 cells against HG-induced cellular injury via the inhibition of apoptosis and pyroptosis activated by ROS.
Apoptosis
;
Benzofurans/pharmacology*
;
Oxidative Stress
;
Pyroptosis
;
Reactive Oxygen Species/metabolism*
2.Effect of deltamethrin on production of reactive oxygen species in PC12 cells.
Huang-Yuan LI ; Yu-Fang ZHONG ; Nian SHI
Chinese Journal of Industrial Hygiene and Occupational Diseases 2008;26(11):654-658
OBJECTIVETo investigate the effect of deltamethrin (DM) on production of reactive oxygen species (ROS) of rat pheochromocytoma (PC12) cells and its mechanism.
METHODSPC12 cells were treated with various dose of DM (0, 10 or 100 micromol/L) for 1, 6 or 12 h respectively. Furthermore, PC12 cells were treated with various dose of DM (0, 10 or 100 micromol/L) for 24 or 48 h, respectively. PC12 cells were pre-incubated with 10 mmol/L N-acetyl-L-cysteine (NAC) for 2 h, or with 500 micromol/L DL-Buthionine-[S, R]-Sulfoximine (BSO) for 16 h, or with 40 micromol/L tertiary butylhydroquinone (tBHQ) for 16 h, prior to exposure to DM and then with 10 micromol/L DM for 6 h. After treatment, ROS production in PC12 cells were measured by a molecular probe, 2', 7'-dichlorofluorescein diacetate (DCFH-DA).
RESULTSDM induced a dose-time dependent increase in ROS production (indicated by DCF fluorescence intensity). 10 micromol/L DM treatment for 6 h enhanced DCF fluorescence intensity that reached approximately 2.24 times of values of control group. Furthermore, a pretreatment with NAC, BSO or tBHQ significantly reduced the DM-enhanced DCF fluorescence intensity that reached approximately 22%, 62% or 38% of values of DM treatment, respectively (P < 0.05), indicating that all these pretreatments attenuate ROS production.
CONCLUSIONThe in vitro studies demonstrate that DM could enhance ROS production, and may be the influential factor for the decreased mercapto level and antioxidative function.
Animals ; Nitriles ; pharmacology ; PC12 Cells ; Pyrethrins ; pharmacology ; Rats ; Reactive Oxygen Species ; metabolism
3.Pro-apoptotic effects of luteolin on hepatoma HepG2 cells.
Yuan-Peng WANG ; Liang ZHOU ; Xing-Guo GONG
Journal of Zhejiang University. Medical sciences 2013;42(5):504-510
OBJECTIVETo investigate the effect of luteolin on cell growth and apoptosis of HepG2 cells in vitro.
METHODSCultured HepG2,HL60,A549 and LO2 cells were treated with luteolin for different doses (0 μg/ml,2.5 μg/ml,10 μg/ml and 20 μg/ml) and varied times (0 h,24 h,48 h and 72 h). Cell viability was measured with MTT assay and IC50 was calculated. The reactive oxygen species (ROS) levels in HepG2 cells treated with luteolin for 6 h and 12 h were measured with flow cytometry. Cell apoptosis of HepG2 cells treated with luteolin for 24h was examined with flow cytometry and Annexin V-FITC/PI. Expression levels of apoptosis pathway proteins (p53,ASPP2 and iASPP) in HepG2 cells were detected with western blot and the dose and time-effect was analyzed.
RESULTSLuteolin effectively inhibited tumor cell proliferation in a dose-and time-dependent manner,and the inhibition rates of 20 μg/ml Luteolin for 72 h were 39.34%,62.90%,57.57% and 62.90% to LO2,HepG2, HL60 and A549 cells,respectively. The intracellular ROS level was decreased in HepG2 cells by 13.88% and 41.11% after being treated with luteolin for 6 h and 12 h,respectively. The apoptosis rate of HepG2 cells treated with luteolin for 24 h was 14.43%,and western blot showed that luteolin reduced the expression level of iASPP by 77.07% and up-regulated the expression of p53 by 179.37% and ASPP2 by 725.02% in HepG2 cells treated with luteolin for 12 h.
CONCLUSIONLuteolin has ant-proliferative and pro-apoptotic activity on hepatoma HepG2 cells, which is associated with the altered expression of pro-apoptotic factors and decreased ROS level in HepG2 cells.
Apoptosis ; drug effects ; Hep G2 Cells ; Humans ; Luteolin ; administration & dosage ; pharmacology ; Reactive Oxygen Species ; metabolism
4.Mitochondrial Reactive Oxygen Species Elicit Acute and Chronic Itch via Transient Receptor Potential Canonical 3 Activation in Mice.
Seong-Ah KIM ; Jun Ho JANG ; Wheedong KIM ; Pa Reum LEE ; Yong Ho KIM ; Hue VANG ; Kihwan LEE ; Seog Bae OH
Neuroscience Bulletin 2022;38(4):373-385
Mitochondrial reactive oxygen species (mROS) that are overproduced by mitochondrial dysfunction are linked to pathological conditions including sensory abnormalities. Here, we explored whether mROS overproduction induces itch through transient receptor potential canonical 3 (TRPC3), which is sensitive to ROS. Intradermal injection of antimycin A (AA), a selective inhibitor of mitochondrial electron transport chain complex III for mROS overproduction, produced robust scratching behavior in naïve mice, which was suppressed by MitoTEMPO, a mitochondria-selective ROS scavenger, and Pyr10, a TRPC3-specific blocker, but not by blockers of TRPA1 or TRPV1. AA activated subsets of trigeminal ganglion neurons and also induced inward currents, which were blocked by MitoTEMPO and Pyr10. Besides, dry skin-induced chronic scratching was relieved by MitoTEMPO and Pyr10, and also by resveratrol, an antioxidant. Taken together, our results suggest that mROS elicit itch through TRPC3, which may underlie chronic itch, representing a potential therapeutic target for chronic itch.
Animals
;
Antioxidants/pharmacology*
;
Mice
;
Mitochondria
;
Pruritus/chemically induced*
;
Reactive Oxygen Species/metabolism*
;
TRPA1 Cation Channel
5.Protection against doxorubicin-induced oxidative damage in normal blood cells by naringenin.
Ying-Qian FENG ; Xue-Lan ZUO ; Rui-Fang LI ; Ke-Jian ZHANG ; Fei CHEN ; Hui XIAO
Journal of Experimental Hematology 2008;16(4):790-793
The objective of this study was to investigate the protection by naringenin against doxorubicin-induced oxidative damage in normal blood cells. Inhibiting effects of naringenin, doxorubicin and naringenin combined with doxorubicind on K562 cells and polymorphonuclear leukocytes were detected with MTT method, the level of reactive oxygen species (ROS) and lipid peroxidation (MDA), the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were examined with spectrophotometric method in the K562 cells and polymorphonuclear leukocytes. The results indicated that the proliferation of K562 cells was not inhibited by the cytotoxicity of doxorubicin in combination of naringenin with doxorubicin. As compared with the doxorubicin, the addition of naringenin after doxorubicin for 1 hour, the levels of reactive oxygen species (ROS) and lipid peroxidation (MDA) obviously decreased, the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) obviously increased in the polymorphonuclear leukocytes, but these were not changed obviously in K562 cells. It is concluded naringenin can protect against doxorubicin-induced oxidative damage in normal blood cells. The mechanism of naringenin may be elevating activities of antioxidant enzyme and degrading oxidative production level in normal blood cells, and meanswhile decreasing level of oxidative products.
Antioxidants
;
pharmacology
;
Doxorubicin
;
adverse effects
;
Erythrocytes
;
drug effects
;
Flavanones
;
pharmacology
;
Humans
;
Oxidative Stress
;
Reactive Oxygen Species
;
metabolism
;
Superoxide Dismutase
;
metabolism
6.Antioxidant and antiaging effect of traditional Thai rejuvenation medicines in Caenorhabditis elegans.
Sutticha RUANGCHUAY ; Qiang-Qiang WANG ; Liang-Yi WANG ; Jing LIN ; Yong-Chao WANG ; Guo-Huan ZHONG ; Katesarin MANEENOON ; Ze-Bo HUANG ; Sasitorn CHUSRI
Journal of Integrative Medicine 2021;19(4):362-373
OBJECTIVE:
This study explored the rejuvenation mechanisms of Thai polyherbal medicines using different approaches, including in vitro methods, as well as a well-defined nematode model, Caenorhabditis elegans.
METHODS:
THP-R-SR012 decoction was selected from 23 polyherbal medicines, based on metal-chelating and chain-breaking antioxidant capacities. The influences of this extract on the survival and some stress biomarkers of C. elegans under paraquat-induced oxidative stress were evaluated. Furthermore, lifespan analysis and levels of lipofuscin accumulation were examined in senescent nematodes. The phytochemical profile of THP-R-SR012 was analyzed.
RESULTS:
Supplementation with THP-R-SR012 decoction significantly increased the mean lifespan and reduced the oxidative damage to C. elegans under oxidative stress conditions. Further, THP-R-SR012 supplementation slightly influenced the lifespan and the level of lipofuscin accumulation during adulthood. Antioxidant-related phytochemical constituents of THP-R-SR012 decoction were rutin, naringenin, 3,4-dihydroxybenzoic acid, gallic acid, glycyrrhizic acid, demethoxycurcumin and 18α-glycyrrhetinic acid.
CONCLUSION
The antioxidant potential of THP-R-SR012 was due to its scavenging properties, its enhancement of antioxidant-related enzyme activities, and the presence of the antioxidant-related compound. These results support the traditional use of THP-R-SR012 decoction as a tonic for nourishing and strengthening the whole body.
Animals
;
Antioxidants/pharmacology*
;
Caenorhabditis elegans/metabolism*
;
Caenorhabditis elegans Proteins/metabolism*
;
Oxidative Stress
;
Plant Extracts/pharmacology*
;
Reactive Oxygen Species
;
Rejuvenation
;
Thailand
7.The role and mechanism of NADPH oxidase in leptin-induced reactive oxygen species production in hepatic stellate cells.
Wen-hua HE ; Bo LI ; Xuan ZHU ; Kun-he ZHANG ; Bi-min LI ; Zhi-jian LIU ; Ge-yun LIU ; Jian WANG
Chinese Journal of Hepatology 2010;18(11):849-854
OBJECTIVETo investigate whether or not NADPH oxidase (NOX) participates in leptin-induced reactive oxygen species (ROS) production in hepatic stellate cells (HSC) and to explore the possible mechanism.
METHODSHSC-T6 cells (rat hepatic stellate cells line) were divided into nine groups: Group1: leptin (100 ng/ml) treated; Group2-6: leptin treated together with inhibitors that block different ROS-producing systems: diphenylene-iodonium (DPI) (20 micromol/L), Rotenone (20 micromol/L), Metyrapone (250 micromol/L), Allopurinol (100 micromol/L) and Indomethacin(100 micromol/L); Group7: leptin treated together with Janus kinase (JAK) inhibitor AG490 50 micromol/L; Group8: normal control group (treated DMEM with 0.1% DMSO); Group9: negative control group (untreated). Intracellular ROS levels were measured with dichlorodihydrofluorescein diacetate (DCFH-DA) dye assay by Fluorescence microscope and/or flow cytometry. NOX activity was analyzed by using spectrophotometer to calculate the absorbance of NADPH. The mRNA levels of Rac1 and p22Phox were evaluated by RT-PCR.
RESULTS(1) Leptin increased significantly the ROS production as compared to normal control group (92.91+/-4.19 vs.27.56+/-6.27, P<0.01) in HSC-T6 cells. Both the NADPH oxidase inhibitor DPI and AG490 (50 micromol/L) blocked the ROS production, inhibitors of other ROS producing systems had no significant effect on ROS production induced by lepin (P is more than 0.05). (2) Leptin treated HSC-T6 cells for 1 hour up-regulated the NOX activity significantly compared with that in normal control group [(1.90+/-0.22) pmol.min(-1).mg(-1) vs. (0.76+/-0.06) pmol.min(-1).mg(-1), P<0.05]. Furthermore, the NOX activity increased after being treated with leptin for 12 hours and 24 hours than being treated for 1 hour. Leptin-induced up-regulation of NOX activity was inhibited by pretreatment with DPI or AG490. (3) The RT-PCR results indicated that mRNA expressions of Rac1 and p22Phox in HSC-T6 cells with 12 hours of leptin stimulation increased significantly as compared with normal control group (0.41+/-0.13 vs 0.14+/-0.08, 0.45+/-0.12 vs 0.20+/-0.08, all P<0.05), while the DPI and AG490 had no effect on the mRNA expressions of Rac1 and p22Phox.
CONCLUSIONNOX is the main cellular source of the reactive oxygen species (ROS) generated by HSCs in response to leptin stimulation. The mechanism is probably that leptin can directly activate NOX through JAK signal transduction and hence induce the expression of NOX subunit to promote the activity of NOX which generates considerable ROS in HSC.
Animals ; Cells, Cultured ; Hepatic Stellate Cells ; drug effects ; metabolism ; Leptin ; pharmacology ; NADPH Oxidases ; genetics ; metabolism ; Rats ; Reactive Oxygen Species ; metabolism
8.Leonurine inhibits ferroptosis in renal tubular epithelial cells by activating p62/Nrf2/HO-1 signaling pathway.
Ai-Jun WU ; Nai-Qing CHEN ; Li-Hua HUANG ; Ran CHENG ; Xiao-Wan WANG ; Chuang LI ; Wei MAO ; Qing-Ming HUANG ; Peng XU ; Rui-Min TIAN
China Journal of Chinese Materia Medica 2023;48(8):2176-2183
To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.
Humans
;
Ferroptosis
;
Reactive Oxygen Species/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Sincalide/pharmacology*
;
Signal Transduction
;
Epithelial Cells/metabolism*
;
Glutathione
9.Mechanisms of MPP⁺-induced PC12 cell apoptosis via reactive oxygen species.
Qing ZHU ; Jing WANG ; Yunjian ZHANG ; Shenggang SUN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2012;32(6):861-866
Apoptosis of dopaminergic neurons in the nigrostriatal projection plays a crucial role in the pathogenesis of Parkinson's disease (PD). Although the detailed mechanisms responsible for dopaminergic neuron loss are still under investigation, oxidative stress is identified as a major contributor for neuronal apoptosis. In the current study, we studied the effects of MPP(+), a substrate that mimics oxidative stress, on neuron-like PC12 cells and the underlying mechanisms. PC12 cells were cultured and treated by 100 μmol/L MPP(+) for 4, 8, 16, 24 and 48 h, respectively. For drug pretreatment, the PC12 cells were incubated with N-acetyl-l-cysteine (NAC, 5 mmol/L), an antioxidant, SP600125 (20 μmol/L) or PD98059 (100 μmol/L), two pharmacological inhibitors of JNK and ERK1/2, for 1 h before addition of MPP(+). Cell apoptosis was measured by flow cytometry. The mRNA expression of Cu(2+)/Zn(2+)-SOD, GSH-Px, Bcl-2 and Bax was detected by RT-PCR. The protein expression of p-ERK1/2 and p-JNK was determined by Western blotting. Our results showed that MPP(+) exposure could induce substantial PC12 cell apoptosis. The pretreatment of SP600125 or PD98059 could effectively reduce the apoptosis rate by reducing the ratio of Bax/Bcl-2 mRNA levels. MPP(+) exposure also induced high level of reactive oxygen species (ROS), marked by dramatic increase of Cu(2+)/Zn(2+)-SOD and GSH-Px mRNA levels. The elevated ROS was strongly associated with the activation of JNK and ERK1/2 signal pathways after MPP(+) exposure, since the pretreatment of NAC significantly reduced the upregulation of p-JNK and p-ERK1/2. Finally, the pretreatment of SP600125, but not PD98059, alleviated the increase of Cu(2+)/Zn(2+)-SOD and GSH-Px mRNAs induced by MPP(+), suggesting that the activation of the JNK signal pathway, but not the ERK1/2 signal pathway, could, in some degree, antagonize the generation of ROS induced by oxidative stress. In conclusion, our results suggest that JNK and ERK1/2 signal pathways, which are activated via ROS, play a crucial role in neuronal apoptosis induced by oxidative stress.
Animals
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
PC12 Cells
;
Piperidines
;
pharmacology
;
Pyrazoles
;
pharmacology
;
Rats
;
Reactive Oxygen Species
;
metabolism
10.Regulation of Mitochondria on Platelet Apoptosis and Activation.
Ying HU ; Li-Li ZHA ; Ke-Sheng DAI
Journal of Experimental Hematology 2023;31(3):816-822
OBJECTIVE:
To explore the regulation of mitochondria on platelet apoptosis and activation, and the relationship between platelet apoptosis and activation.
METHODS:
Platelets were isolated from peripheral venous blood of healthy volunteers. Cyclosporin A (CsA), which has a protective effect on the function of platelet mitochondria, BAPTA, which can chelate calcium ions across membranes in platelets, and NAC, an antioxidant that reduces the level of intracellular reactive oxygen species, were selected for coincubation with washed platelets, respectively. By flow cytometry, platelet aggregator was used to detect the changes of platelet mitochondrial function and platelet activation indexes after different interventions.
RESULTS:
H89, staurosporine, and A23187 led to platelet mitochondrial abnormalities, while CsA could effectively reverse the decline of platelet mitochondrial membrane potential caused by them. Antioxidant NAC could reverse platelet mitochondrial damage correspondingly, and completely reverse platelet shrinkage and phosphatidylserine eversion induced by H89. BAPTA, prostaglandin E1, acetylsalicylic acid and other inhibitors could not reverse the decline of platelet mitochondrial membrane potential.
CONCLUSION
Mitochondrial function plays an important role in platelet apoptosis and activation. Abnormal mitochondrial function causes the imbalance of reduction/oxidation state in platelets, which leads to platelet apoptosis. Platelet apoptosis and activation are independent signal processes.
Humans
;
Blood Platelets/metabolism*
;
Antioxidants/pharmacology*
;
Mitochondria/physiology*
;
Platelet Activation
;
Apoptosis
;
Membrane Potential, Mitochondrial
;
Reactive Oxygen Species/pharmacology*