1.Exploring the variations of the pancreatic ductal system: a systematic review and metaanalysis of observational studies
Adil ASGHAR ; Ravi Kant NARAYAN ; Nagavalli Basavanna PUSHPA ; Apurba PATRA ; Kumar Satish RAVI ; Ravi TUBBS
Anatomy & Cell Biology 2024;57(1):31-44
The exocrine part of the pancreas has a duct system called the pancreatic ductal system (PDS). Its mechanism of development is complex, and any reorganization during early embryogenesis can give rise to anatomical variants. The aim of this study is to collect, classify, and analyze published evidence on the importance of anatomical variants of the PDS, addressing gaps in our understanding of such variations. The MEDLINE, Web of Science, Embase, and Google Scholar databases were searched to identify publications relevant to this review. R studio with meta-package was used for data extraction, risk of bias estimation, and statistical analysis. A total of 64 studies out of 1,778 proved suitable for this review and metanalysis. The meta-analysis computed the prevalence of normal variants of the PDS (92% of 10,514 subjects). Type 3 variants and “descending” subtypes of the main pancreatic duct (MPD) predominated in the pooled samples. The mean lengths of the MPD and accessory pancreatic duct (APD) were 16.53 cm and 3.36 cm, respectively. The mean diameters of the MPD at the head and the APD were 3.43 mm and 1.69 mm, respectively. The APD was present in only 41% of samples, and the long type predominated. The pancreatic ductal anatomy is highly variable, and the incorrect identification of variants may be challenging for surgeons during ductal anastomosis with gut, failure to which may often cause ductal obstruction or pseudocysts formation.
2.Exploring the variations of the pancreatic ductal system: a systematic review and metaanalysis of observational studies
Adil ASGHAR ; Ravi Kant NARAYAN ; Nagavalli Basavanna PUSHPA ; Apurba PATRA ; Kumar Satish RAVI ; Ravi TUBBS
Anatomy & Cell Biology 2024;57(1):31-44
The exocrine part of the pancreas has a duct system called the pancreatic ductal system (PDS). Its mechanism of development is complex, and any reorganization during early embryogenesis can give rise to anatomical variants. The aim of this study is to collect, classify, and analyze published evidence on the importance of anatomical variants of the PDS, addressing gaps in our understanding of such variations. The MEDLINE, Web of Science, Embase, and Google Scholar databases were searched to identify publications relevant to this review. R studio with meta-package was used for data extraction, risk of bias estimation, and statistical analysis. A total of 64 studies out of 1,778 proved suitable for this review and metanalysis. The meta-analysis computed the prevalence of normal variants of the PDS (92% of 10,514 subjects). Type 3 variants and “descending” subtypes of the main pancreatic duct (MPD) predominated in the pooled samples. The mean lengths of the MPD and accessory pancreatic duct (APD) were 16.53 cm and 3.36 cm, respectively. The mean diameters of the MPD at the head and the APD were 3.43 mm and 1.69 mm, respectively. The APD was present in only 41% of samples, and the long type predominated. The pancreatic ductal anatomy is highly variable, and the incorrect identification of variants may be challenging for surgeons during ductal anastomosis with gut, failure to which may often cause ductal obstruction or pseudocysts formation.
3.Exploring the variations of the pancreatic ductal system: a systematic review and metaanalysis of observational studies
Adil ASGHAR ; Ravi Kant NARAYAN ; Nagavalli Basavanna PUSHPA ; Apurba PATRA ; Kumar Satish RAVI ; Ravi TUBBS
Anatomy & Cell Biology 2024;57(1):31-44
The exocrine part of the pancreas has a duct system called the pancreatic ductal system (PDS). Its mechanism of development is complex, and any reorganization during early embryogenesis can give rise to anatomical variants. The aim of this study is to collect, classify, and analyze published evidence on the importance of anatomical variants of the PDS, addressing gaps in our understanding of such variations. The MEDLINE, Web of Science, Embase, and Google Scholar databases were searched to identify publications relevant to this review. R studio with meta-package was used for data extraction, risk of bias estimation, and statistical analysis. A total of 64 studies out of 1,778 proved suitable for this review and metanalysis. The meta-analysis computed the prevalence of normal variants of the PDS (92% of 10,514 subjects). Type 3 variants and “descending” subtypes of the main pancreatic duct (MPD) predominated in the pooled samples. The mean lengths of the MPD and accessory pancreatic duct (APD) were 16.53 cm and 3.36 cm, respectively. The mean diameters of the MPD at the head and the APD were 3.43 mm and 1.69 mm, respectively. The APD was present in only 41% of samples, and the long type predominated. The pancreatic ductal anatomy is highly variable, and the incorrect identification of variants may be challenging for surgeons during ductal anastomosis with gut, failure to which may often cause ductal obstruction or pseudocysts formation.
4.Raymond de Vieussens (1641–1715): connoisseur of cardiologic anatomy and pathological forms thereof
Sanjib Kumar GHOSH ; Ananya PRIYA ; Ravi Kant NARAYAN
Anatomy & Cell Biology 2021;54(4):417-423
Raymond de Vieussens was an exemplary anatomist who made seminal contributions in the field of cardiology. During initial part of his academic career, he adopted human dissection based experiments as medium of his research. This was in accordance with prevailing trend among anatomists during 17th century. He discovered the presence of tiny venous tributaries communicating between cardiac veins and chambers of heart (ducti carnosi/venae cordis minimae). He reported the existence of a collateral circulatory pathway between right and left coronary arterial systems (Vieussens arterial ring). He was the first to note the valve at the junction of great cardiac vein and coronary sinus (valve of Vieussens) and the prominent oval margin of the fossa ovalis (Vieussens Annulus). All his findings were associated with considerable clinical significance as evidenced in literature that followed. Vieussens accurately demonstrated the three-layered orientation of myocardium and gave a precise description of coronary arteries and their branches. At the onset of 18th century, buoyed by royal patronage from King Louis XIV of France, the second half of Vieussens illustrious career was defined by pathologic anatomy (autopsy based) and anatomo clinical correlations. This was a new trend initiated by Vieussens in anatomical research and was later adopted as a signature method by anatomists of 18th century. As a true connoisseur of cardiologic anatomy, Vieussens accurately charted the anatomo clinical correlations of cardiac tamponade, mitral stenosis and aortic regurgitation. His contributions were pivotal elements in metamorphosis of cardiology as a robust discipline of medicine in modern times.
5.Prevalence and clinical relevance of the anatomical variations of suprarenal arteries:a review
Ananya PRIYA ; Ravi Kant NARAYAN ; Sanjib Kumar GHOSH
Anatomy & Cell Biology 2022;55(1):28-39
The suprarenal arteries are arising from three sources: superior suprarenal artery, middle suprarenal artery, and inferior suprarenal artery. Variations in the arterial supply of the suprarenal glands in respect to origin and number are quite common and very frequently reported. The most common variation noted is in the inferior suprarenal artery followed by the middle suprarenal artery and the least common variations were observed in the superior suprarenal artery. Arteriogram of the inferior suprarenal artery is crucial in suprarenal tumour diagnosis but variation in the branching pattern and multiplicity of these arteries can cause hindrance in arteriography. The absence of middle suprarenal artery was seen to be associated with increased number of the inferior suprarenal artery. Variation in the multiplicity of arteries was observed more frequently in the inferior suprarenal artery and middle suprarenal artery which was more on the right side in most of the studies. Also, the variation in suprarenal arteries was often correlated to variations in inferior phrenic and gonadal arteries. The variations were observed to be more common on the left side therefore right adrenalectomy should be preferred over the left one. The loop formed by the inferior suprarenal artery around the right renal vein can cause venous obstruction. These variations of suprarenal vasculature are explained on the developmental basis, and prior knowledge of such variants is crucial for nephrologists to ensure minimum blood loss while performing laparoscopic adrenalectomy especially for large adrenal tumours and pheochromocytoma where the duration of surgery exceeds the usual.