1.The bounds of meta-analytics and an alternative method
Ramalingam SHANMUGAM ; Mohammad TABATABAI ; Derek WILUS ; Karan P. SINGH
Epidemiology and Health 2024;46(1):e2024016-
OBJECTIVES:
Meta-analysis is a statistical appraisal of the data analytic implications of published articles (Y), estimating parameters including the odds ratio and relative risk. This information is helpful for evaluating the significance of the findings. The Higgins I2 index is often used to measure heterogeneity among studies. The objectives of this article are to amend the Higgins I2 index score in a novel and innovative way and to make it more useful in practice.
METHODS:
Heterogeneity among study populations can be affected by many sources, including the sample size and study design. They influence the Cochran Q score and, thus, the Higgins I2 score. In this regard, the I2 score is not an absolute indicator of heterogeneity. Q changes by bound as Y increases unboundedly. An innovative methodology is devised to show the conditional and unconditional probability structures.
RESULTS:
Various properties are derived, including showing that a zero correlation between Q and Y does not necessarily mean that they are independent. A new alternative statistic, S2, is derived and applied to mild cognitive impairment and coronavirus disease 2019 vaccination for meta-analysis.
CONCLUSIONS
A hidden shortcoming of the Higgins I2 index is overcome in this article by amending the Higgins I2 score. The usefulness of the proposed methodology is illustrated using 2 examples. The findings have potential health policy implications.
2.Occupational Heat Stress Impacts on Health and Productivity in a Steel Industry in Southern India.
Manikandan KRISHNAMURTHY ; Paramesh RAMALINGAM ; Kumaravel PERUMAL ; Latha Perumal KAMALAKANNAN ; Jeremiah CHINNADURAI ; Rekha SHANMUGAM ; Krishnan SRINIVASAN ; Vidhya VENUGOPAL
Safety and Health at Work 2017;8(1):99-104
BACKGROUND: Workers laboring in steel industries in tropical settings with high ambient temperatures are subjected to thermally stressful environments that can create well-known risks of heat-related illnesses and limit workers’ productivity. METHODS: A cross-sectional study undertaken in a steel industry in a city nicknamed “Steel City” in Southern India assessed thermal stress by wet bulb globe temperature (WBGT) and level of dehydration from urine color and urine specific gravity. A structured questionnaire captured self-reported heat-related health symptoms of workers. RESULTS: Some 90% WBGT measurements were higher than recommended threshold limit values (27.2–41.7°C) for heavy and moderate workloads and radiational heat from processes were very high in blooming-mill/coke-oven (67.6°C globe temperature). Widespread heat-related health concerns were prevalent among workers, including excessive sweating, fatigue, and tiredness reported by 50% workers. Productivity loss was significantly reported high in workers with direct heat exposures compared to those with indirect heat exposures (χ2 = 26.1258, degrees of freedom = 1, p < 0.001). Change in urine color was 7.4 times higher among workers exposed to WBGTs above threshold limit values (TLVs). CONCLUSION: Preliminary evidence shows that high heat exposures and heavy workload adversely affect the workers’ health and reduce their work capacities. Health and productivity risks in developing tropical country work settings can be further aggravated by the predicted temperature rise due to climate change, without appropriate interventions. Apart from industries enhancing welfare facilities and designing control interventions, further physiological studies with a seasonal approach and interventional studies are needed to strengthen evidence for developing comprehensive policies to protect workers employed in high heat industries.
Climate Change
;
Cross-Sectional Studies
;
Dehydration
;
Efficiency*
;
Fatigue
;
Hot Temperature*
;
India*
;
Seasons
;
Specific Gravity
;
Steel*
;
Sweat
;
Sweating
;
Threshold Limit Values