1.Quantitative Predictive Imaging Biomarkers of Lumbar Intervertebral Disc Degeneration
Rammohan VADAPALLI ; Raghavdutt MULUKUTLA ; Abhinav Sriram VADAPALLI ; Rajanikanth Rao VEDULA
Asian Spine Journal 2019;13(4):527-534
STUDY DESIGN: Observational comparative study. PURPOSE: To compare fractional anisotropy (FA) maps with T2 values of the nucleus pulposus (NP) and annulus fibrosus (AF) of intervertebral discs in healthy volunteers and patients to develop a predictive disc health scale. OVERVIEW OF LITERATURE: T2-weighted magnetic resonance imaging (MRI) is not sensitive to early morphological changes and provides no quantitative biomarker profile for early degeneration. METHODS: We examined 59 healthy controls and 59 patients with back pain by MRI using T2 relaxometry and diffusion tensor imaging (DTI). Each group was divided into three age subgroups: A (<30 years, n=12); B (30–50 years, n=26); and C (>50 years, n=21). We obtained FA values for AF and NP and T2 values for NP for each intervertebral disc. Furthermore, we calculated the FA (AF/NP) ratios. RESULTS: We categorized 590 intervertebral discs from 118 participants, 566 of which were analyzed with T2 relaxometry and DTI. The T2 values were as follows: subgroup A, 55.8±4.4 ms; B, 48.5±6.9 ms; C, 45.8±8.7 ms (p<0.050). The T2 values for the healthy controls of the subgroups A, B, and C were >120 ms, 90–100 ms, and 70 ms, respectively (p<0.001). Control subgroup A had higher T2 values and AF/NP ratios than subgroups B and C; the AF values were not significantly different. Control subgroup B had higher T2 values and AF/NP ratios than subgroup C but lower FA (NP). CONCLUSIONS: FA maps of the AF/NP ratio and T2 values of NP are potential microstructure biomarkers of normal and degenerating discs and can help detect early degeneration using a predictive disc health score on a continuous scale.
Anisotropy
;
Back Pain
;
Biomarkers
;
Diffusion Tensor Imaging
;
Healthy Volunteers
;
Humans
;
Intervertebral Disc Degeneration
;
Intervertebral Disc
;
Magnetic Resonance Imaging