1.Key technologies and challenges in online adaptive radiotherapy for lung cancer.
Baiqiang DONG ; Shuohan ZHENG ; Kelly CHEN ; Xuan ZHU ; Sijuan HUANG ; Xiaobo JIANG ; Wenchao DIAO ; Hua LI ; Lecheng JIA ; Feng CHI ; Xiaoyan HUANG ; Qiwen LI ; Ming CHEN
Chinese Medical Journal 2025;138(13):1559-1567
Definitive treatment of lung cancer with radiotherapy is challenging, as respiratory motion and anatomical changes can increase the risk of severe off-target effects during radiotherapy. Online adaptive radiotherapy (ART) is an evolving approach that enables timely modification of a treatment plan during the interfraction of radiotherapy, in response to physiologic or anatomic variations, aiming to improve the dose distribution for precise targeting and delivery in lung cancer patients. The effectiveness of online ART depends on the seamless integration of multiple components: sufficient quality of linear accelerator-integrated imaging guidance, deformable image registration, automatic recontouring, and efficient quality assurance and workflow. This review summarizes the present status of online ART for lung cancer, including key technologies, as well as the challenges and areas of active research in this field.
Humans
;
Lung Neoplasms/radiotherapy*
;
Radiotherapy Planning, Computer-Assisted/methods*
2.Advances in nanocarrier-mediated cancer therapy: Progress in immunotherapy, chemotherapy, and radiotherapy.
Yue PENG ; Min YU ; Bozhao LI ; Siyu ZHANG ; Jin CHENG ; Feifan WU ; Shuailun DU ; Jinbai MIAO ; Bin HU ; Igor A OLKHOVSKY ; Suping LI
Chinese Medical Journal 2025;138(16):1927-1944
Cancer represents a major worldwide disease burden marked by escalating incidence and mortality. While therapeutic advances persist, developing safer and precisely targeted modalities remains imperative. Nanomedicines emerges as a transformative paradigm leveraging distinctive physicochemical properties to achieve tumor-specific drug delivery, controlled release, and tumor microenvironment modulation. By synergizing passive enhanced permeation and retention effect-driven accumulation and active ligand-mediated targeting, nanoplatforms enhance pharmacokinetics, promote tumor microenvironment enrichment, and improve cellular internalization while mitigating systemic toxicity. Despite revolutionizing cancer therapy through enhanced treatment efficacy and reduced adverse effects, translational challenges persist in manufacturing scalability, longterm biosafety, and cost-efficiency. This review systematically analyzes cutting-edge nanoplatforms, including polymeric, lipidic, biomimetic, albumin-based, peptide engineered, DNA origami, and inorganic nanocarriers, while evaluating their strategic advantages and technical limitations across three therapeutic domains: immunotherapy, chemotherapy, and radiotherapy. By assessing structure-function correlations and clinical translation barriers, this work establishes mechanistic and translational references to advance oncological nanomedicine development.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Nanoparticles/chemistry*
;
Animals
;
Nanomedicine/methods*
;
Drug Delivery Systems/methods*
;
Drug Carriers/chemistry*
;
Radiotherapy/methods*
3.Immunotherapy and radiotherapy: An effective combination in cancer treatment.
Xuewei LI ; Chen WANG ; Haiou YANG ; Wenhui XUE ; Yaqian DING ; Na WU ; Beibei PEI ; Xiaoyan MA ; Wenhui YANG
Chinese Medical Journal 2025;138(20):2527-2539
Immunotherapy has been widely used in cancer treatment in recent years and functions by stimulating the immune system to kill tumor cells. Radiation therapy (RT) uses radiation to induce DNA damage and kill tumor cells. However, this activates the body's immune system, promoting the release of tumor-related antigens from inactive dendritic cells, which stimulates the recurrence and metastasis of tumors in immune system tissues. The combination of RT and immunotherapy has been increasingly evaluated in recent years, with studies confirming the synergistic effect of the two antitumor therapies. Particularly, the combination of RT by dose adjustment with different immunotherapies has positive implications on antitumor immunity as well as disease prognosis compared with respective monotherapies. This review summarizes the current research status, progress, and prospects of RT combined with immunotherapy in cancer treatment. It additionally discusses the prevalent concerns regarding the dose, time window, and toxicity of this combination therapy.
Humans
;
Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Combined Modality Therapy
;
Radiotherapy/methods*
4.Development and evaluation of a positioning system for radiotherapy patient based on structured light surface imaging.
Yungang WANG ; Gongsen ZHANG ; Xianrui YAN ; Guangjie YANG ; Wei WANG ; Jian ZHU ; Linlin WANG
Journal of Biomedical Engineering 2025;42(2):237-245
This paper aims to propose a noninvasive radiotherapy patient positioning system based on structured light surface imaging, and evaluate its clinical feasibility. First, structured light sensors were used to obtain the panoramic point clouds during radiotherapy positioning in real time. The fusion of different point clouds and coordinate transformation were realized based on optical calibration and pose estimation, and the body surface was segmented referring to the preset region of interest (ROI). Then, the global-local registration of cross-source point cloud was achieved based on algorithms such as random sample consensus (RANSAC) and iterative closest point (ICP), to calculate 6 degrees of freedom (DoF) positioning deviation and provide guidance for the correction of couch shifts. The evaluation of the system was carried out based on a rigid adult phantom and volunteers' body, which included positioning error, correlation analysis, and receiver operating characteristic (ROC) analysis. Using Cone Beam CT (CBCT) as the gold standard, the maximum translation and rotation errors of this system were (1.5 ± 0.9) mm along Vrt direction (chest) and (0.7 ± 0.3) ° along Pitch direction (head and neck). The Pearson correlation coefficient between results of system outputs and CBCT verification distributed in an interval of [0.80, 0.84]. Results of ROC analysis showed that the translational and rotational AUC values were 0.82 and 0.85, respectively. In the 4D freedom accuracy test on the human body of volunteers, the maximum translation and rotation errors were (2.6 ± 1.1) mm (Vrt direction, chest and abdomen) and (0.8 ± 0.4)° (Rtn direction, chest and abdomen) respectively. In summary, the positioning system based on structured light body surface imaging proposed in this article can ensure positioning accuracy without surface markers and additional doses, and is feasible for clinical application.
Humans
;
Patient Positioning/methods*
;
Phantoms, Imaging
;
Cone-Beam Computed Tomography
;
Algorithms
;
Radiotherapy, Image-Guided/methods*
;
Radiotherapy Planning, Computer-Assisted/methods*
5.Cross modal translation of magnetic resonance imaging and computed tomography images based on diffusion generative adversarial networks.
Hong SHAO ; Yixuan JING ; Wencheng CUI
Journal of Biomedical Engineering 2025;42(3):575-584
To address the issues of difficulty in preserving anatomical structures, low realism of generated images, and loss of high-frequency image information in medical image cross-modal translation, this paper proposes a medical image cross-modal translation method based on diffusion generative adversarial networks. First, an unsupervised translation module is used to convert magnetic resonance imaging (MRI) into pseudo-computed tomography (CT) images. Subsequently, a nonlinear frequency decomposition module is used to extract high-frequency CT images. Finally, the pseudo-CT image is input into the forward process, while the high-frequency CT image as a conditional input is used to guide the reverse process to generate the final CT image. The proposed model is evaluated on the SynthRAD2023 dataset, which is used for CT image generation for radiotherapy planning. The generated brain CT images achieve a Fréchet Inception Distance (FID) score of 33.159 7, a structure similarity index measure (SSIM) of 89.84%, a peak signal-to-noise ratio (PSNR) of 35.596 5 dB, and a mean squared error (MSE) of 17.873 9. The generated pelvic CT images yield an FID score of 33.951 6, a structural similarity index of 91.30%, a PSNR of 34.870 7 dB, and an MSE of 17.465 8. Experimental results show that the proposed model generates highly realistic CT images while preserving anatomical accuracy as much as possible. The transformed CT images can be effectively used in radiotherapy planning, further enhancing diagnostic efficiency.
Humans
;
Tomography, X-Ray Computed/methods*
;
Magnetic Resonance Imaging/methods*
;
Image Processing, Computer-Assisted/methods*
;
Neural Networks, Computer
;
Brain/diagnostic imaging*
;
Algorithms
;
Radiotherapy Planning, Computer-Assisted
;
Generative Adversarial Networks
6.Research progress on radiotherapy and chemotherapy combined with immunotherapy for locally advanced esophageal squamous cell carcinoma.
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1047-1054
The standard treatment for locally advanced esophageal squamous cell carcinoma (ESCC) is neoadjuvant chemoradiotherapy, followed by surgery or definitive radiotherapy, but clinical results are unsatisfactory. In recent years, relevant studies have shown that immunotherapy combined with chemoradiotherapy has become a new treatment option for locally advanced ESCC. This article summarizes the current progress of chemoradiotherapy combined with immunotherapy in the treatment of locally advanced ESCC, and provides necessary theoretical basis for the comprehensive understanding and optimization of chemoradiotherapy combined with immunotherapy regimens for ESCC.
Humans
;
Esophageal Squamous Cell Carcinoma/therapy*
;
Esophageal Neoplasms/radiotherapy*
;
Immunotherapy/methods*
;
Chemoradiotherapy/methods*
;
Combined Modality Therapy
7.Advances in Radiotherapy for Extensive-stage Small Cell Lung Cancer in the Era of Immunotherapy.
Tingting CHEN ; Yanling YANG ; Haonan HAN ; Dongmin LIU ; Yajing YUAN ; Liming XU
Chinese Journal of Lung Cancer 2025;28(5):353-362
Small cell lung cancer (SCLC) is the thoracic malignant tumor and accounts for about 15% of lung malignancies and transfer often occurs by the time of diagnosis. Extensive stage-small cell lung cancer (ES-SCLC) accounts for about 2/3 of all SCLC. For many years, radiotherapy has occupied an important position in the treatment of SCLC, especially in the treatment of ES-SCLC, because SCLC is more sensitive to radiotherapy. However, in recent years, immune checkpoint inhibitor has shown more excellent antitumor activity in the treatment of ES-SCLC and become the mainstream argument for the treatment of ES-SCLC. However, will radiotherapy be buried by the times among the therapeutic approaches for ES-SCLC? In this article, we will review the clinical progress of radiotherapy, immunotherapy and combination therapy for ES-SCLC.
.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Lung Neoplasms/therapy*
;
Immunotherapy
;
Neoplasm Staging
;
Radiotherapy/methods*
;
Combined Modality Therapy
8.Standardized surgical procedure of proximally extended resection and sphincter-preserving surgery (Tianhe procedure®) for rectal cancer after radiotherapy (2025 version).
Chinese Journal of Gastrointestinal Surgery 2025;28(7):707-716
Tianhe procedure® is a functional sphincter-preserving surgical approach developed for rectal cancer patients following radiotherapy. This technique involves extended proximal resection of the colon beyond the pelvic cavity, followed by anastomosis of the non-irradiated proximal colon to the distal rectum or anal canal. This strategy aims to reduce the incidence of anastomotic complications and postoperative bowel dysfunction. However, there is currently a lack of standardized practice guideline for implementing Tianhe procedure® in China. Therefore, the Chinese Radiation Intestinal Injury Research Group, the Colorectal Surgery Group of Surgery Branch of the Chinese Medical Association, the Anorectal Branch of Chinese Medical Doctor Association, the Colorectal Cancer Committee of the Chinese Medical Doctor Association, and the Colorectal Cancer Committee of China Anti-cancer Association, and the Gastrointestinal Surgical Branch of Guangdong Medical Doctor Association, have jointly convened a panel of national experts to discuss and establish this standardized surgical procedure. This standard, based on the latest evidence from literature, research advancements, and expert experience, focuses on key aspects of the Tianhe procedure®, including its precise definition, indications, critical procedural steps, postoperative complications, and functional rehabilitation strategies. It aims to promote standardized implementation and broader clinical adoption of this innovative surgical technique.
Humans
;
Rectal Neoplasms/radiotherapy*
;
Anal Canal/surgery*
;
Anastomosis, Surgical/methods*
;
Organ Sparing Treatments/methods*
;
Rectum/surgery*
;
Postoperative Complications/prevention & control*
;
Digestive System Surgical Procedures/methods*
9.Evaluation of Clinical Practicability of Hybrid Automatic Treatment Planning for Nasopharyngeal Carcinoma.
Enwei MO ; Lei YU ; Jiyou PENG ; Long YANG ; Jiazhou WANG ; Weigang HU
Chinese Journal of Medical Instrumentation 2025;49(1):55-60
OBJECTIVE:
Automatic planning is a commonly used alternative to manual planning. This study evaluated the clinical performance of automatic plans available in commercial treatment planning systems for nasopharyngeal carcinoma (NPC) treatment by comparing automatic planning with manual planning.
METHODS:
A total of 14 patients with nasopharyngeal carcinoma were enrolled in the study. For each patient, three different sets of clinical goals were used to generate three hybrid automatic plans based on 3D dose distribution prediction and three automatic plans based on script, respectively, which were compared with the manual plans used in clinic.
RESULTS:
The dose coverage performance of the automatic planning based on 3D dose distribution prediction on the planning target volume (PTV) was comparable to that of the manual planning. Automatic planning based on 3D dose prediction achieved the level of manual planning in most organs at risk. However, automatic planning based on scripts did not perform well in the prediction of some organs at risk, especially the parotid gland.
CONCLUSION
The hybrid automatic plan based on 3D dose distribution prediction can reach the level of manual planning and have good robustness with the change of clinical objective.
Humans
;
Nasopharyngeal Neoplasms/radiotherapy*
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Nasopharyngeal Carcinoma
;
Male
;
Female
;
Middle Aged
;
Adult
;
Carcinoma
;
Radiotherapy Dosage
10.Segmented Time Study and Optimization Strategy for Clinical Application of Ethos Online Adaptive Radiotherapy.
Dandan ZHANG ; Yuhan KOU ; Shilong ZHU ; Xiaoyu LIU ; Meng NING ; Peichao BAN ; Jinyuan WANG ; Changxin YAN ; Zhongjian JU
Chinese Journal of Medical Instrumentation 2025;49(2):134-140
OBJECTIVE:
To analyze the time characteristics of the Ethos online adaptive radiotherapy (OART) process in clinical practice and provide guidance for the comprehensive optimization of each stage of adaptive radiotherapy.
METHODS:
The study involved 61 patients with cervical, rectal, gastric, lung, esophageal, and breast cancers who underwent Ethos OART. The mean ± standard deviation of segmental time, total time, and target volume for these patients were tracked. The time characteristics for different cancer types were evaluated, and the average time for target and organ at risk (OAR) modifications was compared with the average target volume for each cancer type.
RESULTS:
Cervical cancer born the longest total treatment time, while breast cancer had the shortest. For all cancer types except breast cancer, the modification time for target and OAR was the most time-consuming segment. The average time for target and OAR modifications aligned with the trend of the average target volume.
CONCLUSION
The total treatment time for various cancers ranges from 15 to 35 minutes, indicating room for improvement.
Humans
;
Radiotherapy Planning, Computer-Assisted/methods*
;
Neoplasms/radiotherapy*
;
Female

Result Analysis
Print
Save
E-mail