1.Morphological and physiological responses to shading caused by dense planting or light quality modulation in shade-tolerant plant Anoectochilus roxburghii.
Xiao-Lei GUO ; Li-Chun ZHOU ; Ming-Jie LI ; Zhong-Yi ZHANG ; Li GU
China Journal of Chinese Materia Medica 2025;50(10):2648-2657
The balance between growth and defense in response to nearby or canopy shading in heliotropic plants has been deeply understood. However, the adaptive traits developed by shade-tolerant plants through long-term evolution remain unclear. In this study, the typical shade-tolerant medicinal plant Anoectochilus roxburghii was used as the experimental material.(1) Different planting densities were set, including 8 cm(row spacing) × 8 cm(plant spacing), 6 cm × 6 cm, 4 cm × 4 cm, and 2 cm × 2 cm, to monitor the individual plant responses to nearby shading.(2) Different light environments, including blue light∶red light=3∶2(B3R2), blue light∶red light∶far-red light=3∶2∶1(B3R2FR1), blue light∶red light∶far-red light=3∶2∶2(B3R2FR2), and blue light∶red light∶far-red light=3∶2∶4(B3R2FR4), were set to monitor the morphological and physiological changes in plants in response to actual shading conditions. The results showed that:(1) Moderate increases in planting density helped optimize morphological traits such as stem diameter and leaf area. This not only slightly increased biomass but also significantly improved SOD activity in both leaves and stems, as well as lignin content in stems, thereby enhancing the plant's defense capabilities.(2) Increasing the far-red light in the light environment negatively regulated the plant height of A. roxburghii, which was contrary to the typical shade-avoidance response observed in heliotropic plants. However, it significantly enhanced SOD and POD activity in both stems and leaves, as well as lignin content in stems. Furthermore, it reduced the incidence and disease index of stalk rot, effectively defending against biotic stress. Therefore, the shade-tolerant plant A. roxburghii has specific adaptive strategies for shading conditions. Reasonable dense planting or light environment modulation can synergistically improve yield, medicinal quality, and resistance of A. roxburghii. This study provides a theoretical foundation and technical support for optimizing the regional deployment and cultivation strategies of ecological planting for Chinese medicinal materials.
Orchidaceae/genetics*
;
Light
;
Plant Leaves/physiology*
;
Sunlight
;
Adaptation, Physiological/radiation effects*
;
Plant Proteins/genetics*
2.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
3.Oroxylin A inhibits UVB-induced non-melanoma skin cancer by regulating XPA degradation.
Renjie DOU ; Jiarui SUN ; Hang YANG ; Yufen ZHENG ; Kang YUAN ; Lei QIANG ; Run MA ; Yunyao LIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):742-753
Oroxylin A (OA), a natural compound extracted from Scutellaria baicalensis, demonstrates preventive potential against ultraviolet B (UVB)-induced non-melanoma skin cancer (NMSC), the most prevalent cancer worldwide with increasing incidence. Utilizing SKH-1 hairless mice exposed to UVB, this study showed that OA delayed NMSC onset and alleviated acute skin damage. Mechanistic investigations revealed its dual action: inhibiting inflammation and enhancing nucleotide excision repair (NER) by stabilizing XPA, a crucial deoxyribonucleic acid (DNA) repair protein. This stabilization occurred through OA's interaction with glucose-regulated protein 94 (GRP94), which disrupted murine double minute 2 (MDM2)-mediated XPA ubiquitination and proteasomal degradation. By maintaining XPA levels, OA expedited photoproduct clearance and diminished genomic instability, ultimately impeding NMSC development. These findings suggest OA as a promising chemopreventive agent targeting the GRP94/MDM2-XPA axis to counteract UVB-induced carcinogenesis.
Animals
;
Ultraviolet Rays/adverse effects*
;
Skin Neoplasms/prevention & control*
;
Flavonoids/pharmacology*
;
Mice
;
Xeroderma Pigmentosum Group A Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-mdm2/genetics*
;
DNA Repair/drug effects*
;
Scutellaria baicalensis/chemistry*
;
Mice, Hairless
;
Skin/radiation effects*
4.Laser-assisted spatiotemporal control of Noxa expression in engineering bacteria for treating tumors.
Tingfang GAN ; Naiming ZHENG ; Huifeng LI ; Jinrui XU ; Ningning WU ; Lixin MA ; Yunhong HU
Chinese Journal of Biotechnology 2025;41(8):3199-3213
Bacterial therapy has attracted increasing attention due to its special mechanism and abundant applications. With the flourishing development of synthetic biology, therapeutic genes have been introduced into engineering bacteria to improve their antitumor efficacy. However, it is difficult to spatiotemporally control the expression of these therapeutic genes at the tumor site in vivo, thereby considerably limiting the application of engineered bacteria in tumor treatment. To resolve this problem, we constructed a temperature-responsive bacterial strain capable of triggering the expression of exogenous genes in a laser-controllable way. Noxa, a pro-apoptotic protein, is chosen to test the expression of exogenous protein and its anti-tumor effect in engineered bacteria upon laser irradiation. Firstly, Noxa was fused to the C-terminus of the bacterial outer membrane protein cytolysin A (ClyA), and then the recombinant gene fragment ClyA-Noxa was inserted into the temperature-sensitive plasmid pBV220 and the recombinant plasmid was transformed into non-pathogenic Escherichia coli MG1655. Thus, we constructed the engineering strain (TRB@Noxa) that could express Noxa on the bacterial surface. TRB@Noxa could target and colonize the tumor tissue without causing notable host toxicity. The bacterial infection triggered thrombosis in the tumor tissue, resulting in the darkness of tumor sites. In a xenograft mouse tumor model, our strategy demonstrated precise tumor targeting and strong tumor inhibition. In conclusion, we successfully constructed a new engineering bacterial strain TRB@Noxa. TRB@Noxa combined with photothermal therapy could arrest tumor growth in the absence of photosensitizers, which represents an appealing method for antitumor therapy in the future.
Escherichia coli/radiation effects*
;
Animals
;
Humans
;
Lasers
;
Mice
;
Proto-Oncogene Proteins c-bcl-2/biosynthesis*
;
Neoplasms/therapy*
;
Genetic Engineering
;
Cell Line, Tumor
;
Escherichia coli Proteins/genetics*
5.Effects of Electromagnetic Pulses on Exosomes Secretion by A549 Cells.
Qingxia HOU ; Yingmei WANG ; Meng CAO ; Jiangzheng LIU ; Deqin KONG ; Qian ZHANG ; Weihua YU ; Guangzhou AN
Chinese Journal of Lung Cancer 2024;27(12):885-893
BACKGROUND:
Numerous researches indicated that electromagnetic pulses (EMP) possessed advantages such as strong targeting, minimal side-effects and low treatment cost in tumor therapy, but its optimum parameters for treatment and the relationship between EMP and tumor-derived exosomes remains unclear. This study aims to clarify the effects of EMP with different parameters on the quantity and miRNA (microRNA) of exosomes secreted by human non-small cell lung cancer A549 cells, providing beneficial reference for the clinical application of EMP and related research.
METHODS:
A549 cells were randomly divided into control group and different EMP radiation groups with respective intensity of 400, 600 and 800 kV/m. EMP was performed with 2000 pulses once, 20 Hz of repetition frequency and 120 ns of pulse width. A549 cells were radiated once per day for continuous 3 days. After radiation, exosomes were collected and identified; cell number was measured by trypan blue staining; the concentration of exosomes was measured by nanoparticle tracking analysis (NTA); the abundance of miRNAs was determined by miRNA sequencing.
RESULTS:
Compared with control group, the morphology and cell viability of A549 cells in radiation group was not different, but the quantity of exosomes in 400 or 800 kV/m radiation group was significantly decreased (P<0.05), in contrast with obvious increase in 600 kV/m radiation group (P<0.05). The abundance of exosomal miRNAs between control group and each EMP group was obviously different (P<0.05) and target genes of differentially abundant miRNAs enriched in different pathways.
CONCLUSIONS
Under the experimental condition, the quantity and miRNA abundance of exosomes could be changed by EMP radiation, which could further influence the function of tumor-derived exosomes.
Humans
;
Exosomes/genetics*
;
A549 Cells
;
MicroRNAs/metabolism*
;
Lung Neoplasms/pathology*
;
Cell Survival/radiation effects*
;
Electromagnetic Fields
6.Molecular mechanism of ginsenoside Rg_1 against radiation enteritis: based on network pharmacology and in vitro experiment.
Yu-Guo WANG ; Yong-Qi DOU ; Zi-Qiao YAN ; Yue GAO
China Journal of Chinese Materia Medica 2023;48(10):2810-2819
Via network pharmacology, molecular docking, and cellular experiment, this study explored and validated the potential molecular mechanism of ginsenoside Rg_1(Rg_1) against radiation enteritis. Targets of Rg_1 and radiation enteritis were retrieved from BATMAN-TCM, SwissTargetPrediction, and GeneCards. Cytoscape 3.7.2 and STRING were employed for the construction of protein-protein interaction(PPI) network for the common targets, and screening of core targets. DAVID was used for Gene Ontology(GO) term and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict the possible mechanism, followed by molecular docking of Rg_1 with core targets and cellular experiment. For the cellular experiment, ~(60)Co-γ irradiation was performed for mo-deling of IEC-6 cells, which were then treated with Rg_1, protein kinase B(AKT) inhibitor LY294002, and other drugs to verify the effect and mechanism of Rg_1. The results showed that 29 potential targets of Rg_1, 4 941 disease targets, and 25 common targets were screened out. According to the PPI network, the core targets were AKT1, vascular endothelial growth factor A(VEGFA), heat shock protein 90 alpha family class A member 1(HSP90AA1), Bcl-2-like protein 1(BCL2L1), estrogen receptor 1(ESR1), etc. The common targets were mainly involved in the GO terms such as positive regulation of RNA polymerase Ⅱ promoter transcription, signal transduction, positive regulation of cell proliferation, and other biological processes. The top 10 KEGG pathways included phosphoinositide 3-kinase(PI3K)/AKT pathway, RAS pathway, mitogen-activated protein kinase(MAPK) pathway, Ras-proximate-1(RAP1) pathway, and calcium pathway, etc. Molecular docking showed that Rg_1 had high binding affinity to AKT1, VEGFA, HSP90AA1, and other core targets. Cellular experiment indicated that Rg_1 can effectively improve cell viability and survival, decrease apoptosis after irradiation, promote the expression of AKT1 and B-cell lymphoma-extra large(BCL-XL), and inhibit the expression of the pro-apoptotic protein Bcl-2-associated X protein(BAX). In conclusion, through network pharmacology, molecular docking, and cellular experiment, this study verified the ability of Rg_1 to reduce radiation enteritis injury. The mechanism was that it regulated PI3K/AKT pathway, thereby suppressing apoptosis.
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Network Pharmacology
;
Ginsenosides/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Vascular Endothelial Growth Factor A
;
Molecular Docking Simulation
;
Radiation Injuries
;
Drugs, Chinese Herbal/pharmacology*
7.Symptomatic Radiation Pneumonitis in NSCLC Patients Receiving EGFR-TKIs and Concurrent Once-daily Thoracic Radiotherapy: Predicting the Value of Clinical and Dose-volume Histogram Parameters.
Xuexi YANG ; Ting MEI ; Min YU ; Youling GONG
Chinese Journal of Lung Cancer 2022;25(6):409-419
BACKGROUND:
The incidence of symptomatic radiation pneumonitis (RP) and its relationship with dose-volume histogram (DVH) parameters in non-small cell lung cancer (NSCLC) patients receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and concurrent once-daily thoracic radiotherapy (TRT) remain unclear. We aim to analyze the values of clinical factors and dose-volume histogram (DVH) parameters to predict the risk for symptomatic RP in these patients.
METHODS:
Between 2011 and 2019, we retrospectively analyzed and identified 85 patients who had received EGFR-TKIs and once-daily TRT simultaneously (EGFR-TKIs group) and 129 patients who had received concurrent chemoradiotherapy (CCRT group). The symptomatic RP was recorded according to the Common Terminology Criteria for Adverse Event (CTCAE) criteria (grade 2 or above). Statistical analyses were performed using SPSS 26.0.
RESULTS:
In total, the incidences of symptomatic (grade≥2) and severe RP (grade≥3) were 43.5% (37/85) and 16.5% (14/85) in EGFR-TKIs group vs 27.1% (35/129) and 10.1% (13/129) in CCRT group respectively. After 1:1 ratio between EGFR-TKIs group and CCRT group was matched by propensity score matching, chi-square test suggested that the incidence of symptomatic RP in the MATCHED EGFR-TKIs group was higher than that in the matched CCRT group (χ2=4.469, P=0.035). In EGFR-TKIs group, univariate and multivariate analyses indicated that the percentage of ipsilateral lung volume receiving ≥30 Gy (ilV30) [odds ratio (OR): 1.163, 95%CI: 1.036-1.306, P=0.011] and the percentage of total lung volume receiving ≥20 Gy (tlV20) (OR: 1.171, 95%CI: 1.031-1.330, P=0.015), with chronic obstructive pulmonary disease (COPD) or not (OR: 0.158, 95%CI: 0.041-0.600, P=0.007), were independent predictors of symptomatic RP. Compared to patients with lower ilV30/tlV20 values (ilV30 and tlV20
Carcinoma, Non-Small-Cell Lung/radiotherapy*
;
ErbB Receptors/genetics*
;
Humans
;
Lung Neoplasms/radiotherapy*
;
Protein Kinase Inhibitors/adverse effects*
;
Pulmonary Disease, Chronic Obstructive/complications*
;
Radiation Pneumonitis/etiology*
;
Radiotherapy Dosage
;
Retrospective Studies
8.Mechanisms of microRNA action in rectal cancer radiotherapy.
Lili ZHU ; Mojin WANG ; Na CHEN ; Yujie ZHANG ; Tao XU ; Wen ZHUANG ; Shuomeng XIAO ; Lei DAI
Chinese Medical Journal 2022;135(17):2017-2025
Preoperative neoadjuvant chemoradiotherapy, combined with total mesorectal excision, has become the standard treatment for advanced localized rectal cancer (RC). However, the biological complexity and heterogeneity of tumors may contribute to cancer recurrence and metastasis in patients with radiotherapy-resistant RC. The identification of factors leading to radioresistance and markers of radiosensitivity is critical to identify responsive patients and improve radiotherapy outcomes. MicroRNAs (miRNAs) are small, endogenous, and noncoding RNAs that affect various cellular and molecular targets. miRNAs have been shown to play important roles in multiple biological processes associated with RC. In this review, we summarized the signaling pathways of miRNAs, including apoptosis, autophagy, the cell cycle, DNA damage repair, proliferation, and metastasis during radiotherapy in patients with RC. Also, we evaluated the potential role of miRNAs as radiotherapeutic biomarkers for RC.
Humans
;
MicroRNAs/metabolism*
;
Neoplasm Recurrence, Local
;
Rectal Neoplasms/pathology*
;
Neoadjuvant Therapy
;
Radiation Tolerance/genetics*
9.The role and mechanism of tumor metastasis-associated gene 1 in radiosensitivity of HeLa cells.
Fang Zhou SUN ; Jin Song WANG ; Chun Xiao LI ; Ting WANG ; Jing Yao ZHANG ; Yan Tong ZHOU ; Hai Juan WANG ; Hai Li QIAN
Chinese Journal of Oncology 2022;44(9):962-967
Objective: To determine the effect of tumor metastasis-associated gene 1 (MTA1) on the sensitivity of HeLa cells to radiotherapy, and to clarify its molecular mechanism. Methods: The transcriptome differences between MTA1 knocked down Hela cells and control cells were analyzed, and the differentially expressed genes (DEGs) was used to perform Gene-Set Enrichment Analysis (GSEA) and Gene Ontology (GO) cluster analysis. Flow cytometry was used to detect apoptosis in MTA1-overexpressed HeLa cells and control cells before and after 10 Gy X-ray irradiation. Cloning formation assay and real-time cellular analysis (RTCA) were used to monitor the cell proliferation before and after 2 Gy X-ray irradiation. To dissect the underlying molecular mechanisms of MTA1 affecting the sensitivity of radiotherapy, the proteins encoded by the DEGs were selected to construct a protein-protein interaction network, the expression of γ-H2AX was detected by immunofluorescence assay, and the expression levels of γ-H2AX, β-CHK2, PARP and cleaved caspase 3 were measured by western blot. Results: By transcriptome sequencing analysis, we obtained 649 DEGs, of which 402 genes were up-regulated in MTA1 knockdown HeLa cells and 247 genes were down-regulated. GSEA results showed that DEGs associated with MTA1 were significantly enriched in cellular responses to DNA damage repair processes. The results of flow cytometry showed that the apoptosis rate of MTA1 over-expression group (15.67±0.81)% after 10 Gy X-ray irradiation was significantly lower than that of the control group [(40.27±2.73)%, P<0.001]. After 2 Gy X-ray irradiation, the proliferation capacity of HeLa cells overexpressing MTA1 was higher than that of control cells (P=0.024). The numbers of colon in MTA1 over-expression group before and after 2 Gy X-ray irradiation were (176±7) and (137±7) respectively, higher than (134±4) and (75±4) in control HeLa cells (P<0.05). The results of immunofluorescence assay showed that there was no significant expression of γ-H2AX in MTA1 overexpressed and control HeLa cells without X-ray irradiation. Western blot results showed that the expression level of β-CHK2 in MTA1-overexpressing HeLa cells (1.04±0.06) was higher than that in control HeLa cells (0.58±0.25, P=0.036) after 10 Gy X-ray irradiation. The expression levels of γ-H2AX, PARP, and cleaved caspase 3 were 0.52±0.13, 0.52±0.22, and 0.63±0.18, respectively, in HeLa cells overexpressing MTA1, which were lower than 0.87±0.06, 0.78±0.12 and 0.90±0.12 in control cells (P>0.05). Conclusions: This study showed that MTA1 is significantly associated with radiosensitivity in cervical cancer HeLa cells. MTA1 over-expression obviously reduces the sensitivity of cervical cancer cells to X-ray irradiation. Mechanism studies initially indicate that MTA1 reduces the radiosensitivity of cervical cancer cells by inhibiting cleaved caspase 3 to suppress apoptosis and increasing β-CHK2 to promote DNA repair.
Apoptosis/genetics*
;
Caspase 3/metabolism*
;
Female
;
HeLa Cells
;
Humans
;
Poly(ADP-ribose) Polymerase Inhibitors
;
Radiation Tolerance/genetics*
;
Repressor Proteins/metabolism*
;
Trans-Activators/metabolism*
;
Uterine Cervical Neoplasms/radiotherapy*
10.circ-WHSC1 affects the growth, metastasis and radiotherapy sensitivity of nasopharyngeal carcinoma cells by targeting miR-338-3p/ELAVL1 axis.
Ying LI ; Yu Jie LI ; Min YU ; Dan ZHAO ; Zhao Li DING
Chinese Journal of Oncology 2022;44(11):1175-1185
Objective: To study the effect of circ-WHSC1 on the growth, metastasis and radiosensitivity of nasopharyngeal carcinoma cells and its molecular mechanism. Methods: Cancerous tissues and adjacent tissues were collected from 23 patients with nasopharyngeal carcinoma, and real-time fluorescent quantitative PCR (RT-qPCR) was used to detect the expression levels of circ-WHSC1, miR-338-3p, and ELAVL1 mRNA. Western blot was used to detect the expression of ELAVL1 protein. Nasopharyngeal carcinoma cells 5-8F and SUNE1 were divided into si-NC group, si-circ-WHSC1 group, pCD5-ciR group, circ-WHSC1 group, anti-miR-NC group, anti-miR-338-3p group, miR-NC group, miR-338-3p group, si-circ-WHSC1+ anti-miR-NC group, si-circ-WHSC1+ anti-miR-338-3p group, miR-338-3p+ pcDNA group, miR-338-3p+ ELAVL1 group. Tetramethylazolium salt colorimetric method (MTT) was used to detect cell viability. Clone formation test was used to detect cell clone formation and cell radiosensitivity. Flow cytometry was used to detect cell apoptosis. Transwell was used to detect cell migration and invasion. Dual luciferase assay was used to detect the targeting relationship between circ-WHSC1 and miR-338-3p, miR-338-3p and ELAVL1. The SUNE1 cells stably transfected with sh-circ-WHSC1 were injected into nude mice and irradiated with radiation, and then the tumor volume and weight of mice were detected. Results: The expressions of circ-WHSC1 (1.57±0.94 vs 3.78±1.18, 1.00±0.10 vs 1.64±0.14/2.00±0.21/2.81±0.26/3.36±0.34) and ELAVL1 (1.28±0.74 vs 3.36±0.77, 1.00±0.08 vs 2.51±0.19/3.27±0.27) in nasopharyngeal carcinoma tissues and cells were increased, and the expression of miR-338-3p (3.13±0.96 vs 1.37±0.98, 1.00±0.08 vs 0.48±0.08/0.38±0.07) was decreased (P<0.05). After knockdown of circ-WHSC1, the activity of nasopharyngeal carcinoma cells was decreased [(100.00±8.00)% vs (51.33±8.62)%, (100.00±10.10)% vs (41.02±7.31)%], the number of clone-forming cells was decreased (101.00±8.54 vs 50.33±8.02, 114.00±14.10 vs 42.33±10.01), the rate of apoptosis was increased [(5.37±1.20)% vs (18.3±1.01)%, (6.5±1.18)% vs (22.43±1.40)%], and the numbers of migration (136.00±13.00 vs 72.33±9.50, 154.00±14.10 vs 62.67±11.50) and invasion (113.67±11.59 vs 60.67±9.07, 124.33±15.57 vs 50.33±9.01) were decreased; after different doses of radiation, the cell survival score was decreased (0.23±0.04 vs 0.06±0.01, 0.32±0.07 vs 0.05±0.02) (P<0.05). Circ-WHSC1 targeted and negatively regulated miR-338-3p. Inhibition of miR-338-3p affected the effect of knockdown of circ-WHSC1 on the proliferation, apoptosis, migration, invasion and radiosensitivity of nasopharyngeal carcinoma cells. MiR-338-3p targeted and negatively regulated ELAVL1; ELAVL1 overexpression affected the effects of miR-338-3p on the proliferation, apoptosis, migration, invasion and radiosensitivity of nasopharyngeal carcinoma cells. After the cells stably transfected with sh-circ-WHSC1 were injected into nude mice, the tumor volume [(884.67±95.63)mm(3) vs (487.33±76.51)mm(3)] and weight [(899.01±88.54)mg vs (558.67±75.04) mg] of the nude mice were reduced; after further irradiation, the tumor volume [(395.00±73.50)mm(3) vs 243.13±42.51)mm(3)] and weight[ (452.33±67.30)mg vs (211.09±57.51)mg] of the nude mice were reduced (P<0.05). Circ-WHSC1 regulated the expression of ELAVL1 by targeting miR-382. Conclusion: Knockdown of circ-WHSC1 can inhibit the growth and metastasis of nasopharyngeal carcinoma cells by targeting miR-338-3p/ELAVL1 axis, and enhances the radiosensitivity of nasopharyngeal carcinoma cells.
Mice
;
Animals
;
Nasopharyngeal Carcinoma/radiotherapy*
;
Mice, Nude
;
MicroRNAs/genetics*
;
Antagomirs
;
Cell Line, Tumor
;
Radiation Tolerance/genetics*
;
Nasopharyngeal Neoplasms/pathology*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic

Result Analysis
Print
Save
E-mail