1.TAR DNA binding protein-43 and fused in sarcoma/translocated in liposarcoma protein in two neurodegenerative diseases.
Acta Academiae Medicinae Sinicae 2012;34(3):286-292
TAR DNA binding protein-43(TDP-43) and fused in sarcoma/translocated in liposarcoma protein (FUS/TLS) have been found to be associated with two neurodegenerative diseases - amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in TDP-43 and FUS/TLS lead to abnormal protein expressions, which result in altered RNA processing. The pathological changes of TDP-43 and FUS/TLS-associated ALS and FTD are similar. Although the interactions between ALS and FTD remain unknown, it is speculated that TDP-43 and FUS/TLS-associated neurodegenerative diseases may share similar pathogenesis.
Amyotrophic Lateral Sclerosis
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Frontotemporal Dementia
;
Humans
;
Mutation
;
RNA Processing, Post-Transcriptional
;
RNA-Binding Protein FUS
;
genetics
;
metabolism
2.Clinical feature difference between juvenile amyotrophic lateral sclerosis with SPTLC1 and FUS mutations.
Peishan WANG ; Qiao WEI ; Hongfu LI ; Zhi-Ying WU
Chinese Medical Journal 2023;136(2):176-183
BACKGROUND:
Juvenile amyotrophic lateral sclerosis (JALS) is an uncommon form of amyotrophic lateral sclerosis whose age at onset (AAO) is defined as prior to 25 years. FUS mutations are the most common cause of JALS. SPTLC1 was recently identified as a disease-causative gene for JALS, which has rarely been reported in Asian populations. Little is known regarding the difference in clinical features between JALS patients carrying FUS and SPTLC1 mutations. This study aimed to screen mutations in JALS patients and to compare the clinical features between JALS patients with FUS and SPTLC1 mutations.
METHODS:
Sixteen JALS patients were enrolled, including three newly recruited patients between July 2015 and August 2018 from the Second Affiliated Hospital, Zhejiang University School of Medicine. Mutations were screened by whole-exome sequencing. In addition, clinical features such as AAO, onset site and disease duration were extracted and compared between JALS patients carrying FUS and SPTLC1 mutations through a literature review.
RESULTS:
A novel and de novo SPTLC1 mutation (c.58G>A, p.A20T) was identified in a sporadic patient. Among 16 JALS patients, 7/16 carried FUS mutations and 5/16 carried respective SPTLC1 , SETX , NEFH , DCTN1 , and TARDBP mutations. Compared with FUS mutation patients, those with SPTLC1 mutations had an earlier AAO (7.9 ± 4.6 years vs. 18.1 ± 3.9 years, P < 0.01), much longer disease duration (512.0 [416.7-607.3] months vs. 33.4 [21.6-45.1] months, P < 0.01), and no onset of bulbar.
CONCLUSION
Our findings expand the genetic and phenotypic spectrum of JALS and help to better understand the genotype-phenotype correlation of JALS.
Humans
;
Amyotrophic Lateral Sclerosis/genetics*
;
DNA Helicases/genetics*
;
Genetic Association Studies
;
Multifunctional Enzymes/genetics*
;
Mutation/genetics*
;
RNA Helicases/genetics*
;
RNA-Binding Protein FUS/genetics*
;
Serine C-Palmitoyltransferase/genetics*
;
Child, Preschool
;
Child
;
Adolescent
;
Young Adult
3.FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis.
Dmitry KRYNDUSHKIN ; Reed B WICKNER ; Frank SHEWMAKER
Protein & Cell 2011;2(3):223-236
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the premature loss of motor neurons. While the underlying cellular mechanisms of neuron degeneration are unknown, the cytoplasmic aggregation of several proteins is associated with sporadic and familial forms of the disease. Both wild-type and mutant forms of the RNA-binding proteins FUS and TDP-43 accumulate in cytoplasmic inclusions in the neurons of ALS patients. It is not known if these so-called proteinopathies are due to a loss of function or a gain of toxicity resulting from the formation of cytoplasmic aggregates. Here we present a model of FUS toxicity using the yeast Saccharomyces cerevisiae in which toxicity is associated with greater expression and accumulation of FUS in cytoplasmic aggregates. We find that FUS and TDP-43 have a high propensity for co-aggregation, unlike the aggregation patterns of several other aggregation-prone proteins. Moreover, the biophysical properties of FUS aggregates in yeast are distinctly different from many amyloidogenic proteins, suggesting they are not composed of amyloid.
Amyotrophic Lateral Sclerosis
;
metabolism
;
pathology
;
Cell Proliferation
;
drug effects
;
Cytoplasm
;
drug effects
;
metabolism
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Detergents
;
pharmacology
;
Humans
;
Kinetics
;
Peptides
;
metabolism
;
Prions
;
chemistry
;
metabolism
;
Protein Binding
;
drug effects
;
Protein Multimerization
;
drug effects
;
Protein Structure, Quaternary
;
Protein Transport
;
RNA-Binding Protein FUS
;
chemistry
;
genetics
;
metabolism
;
Saccharomyces cerevisiae
;
cytology
;
drug effects
;
genetics
;
metabolism
;
Saccharomyces cerevisiae Proteins
;
chemistry
;
metabolism
4.Progress in genetic research on essential tremor.
Yuwen ZHAO ; Qiying SUN ; Kai LI ; Jifeng GUO ; Beisha TANG ; Xinxiang YAN
Chinese Journal of Medical Genetics 2017;34(5):767-771
Essential tremor (ET) is one of the most common movement disorders. Its clinical manifestations not only include typical kinetic and/or postural tremors, but also other non-motor symptoms such as cognitive dysfunction, sleep disturbance, and dysosmia. The exact etiology and pathogenesis of ET is still unknown. Approximately 60% of ET patients have a family history, and genetic factor plays an important role in the onset of the disease. Researchers have so far identified 3 genetic loci (ETM 1-3) through family studies, and proposed additional causative genes such as FUS, HTRA2, TENM4, NOS3 and susceptibility genes such as LINGO, SLC1A2, and GABA. This review focuses on the progress made in genetic research on ET.
Essential Tremor
;
etiology
;
genetics
;
Genetic Predisposition to Disease
;
Genetic Research
;
High-Temperature Requirement A Serine Peptidase 2
;
genetics
;
Humans
;
Membrane Proteins
;
genetics
;
Nerve Tissue Proteins
;
genetics
;
RNA-Binding Protein FUS
;
genetics
5.CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs.
Lixia WANG ; Fei YI ; Lina FU ; Jiping YANG ; Si WANG ; Zhaoxia WANG ; Keiichiro SUZUKI ; Liang SUN ; Xiuling XU ; Yang YU ; Jie QIAO ; Juan Carlos Izpisua BELMONTE ; Ze YANG ; Yun YUAN ; Jing QU ; Guang-Hui LIU
Protein & Cell 2017;8(5):365-378
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 and FUS mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Amyotrophic Lateral Sclerosis
;
genetics
;
metabolism
;
therapy
;
Cell Line
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Genetic Therapy
;
Genome-Wide Association Study
;
Humans
;
Induced Pluripotent Stem Cells
;
metabolism
;
Mutation, Missense
;
RNA-Binding Protein FUS
;
genetics
;
metabolism
;
Superoxide Dismutase-1
;
genetics
;
metabolism
7.Detection of chromosomal translocation in fresh samples of myxoid/round cell liposarcoma by long-distance polymerase chain reaction.
Hua XIANG ; Jian WANG ; Masanori HISAOKA ; Xiong-zeng ZHU
Chinese Journal of Pathology 2007;36(6):412-413
Adult
;
Base Sequence
;
DNA, Neoplasm
;
genetics
;
Exons
;
Female
;
Humans
;
Liposarcoma
;
genetics
;
Liposarcoma, Myxoid
;
genetics
;
Male
;
Middle Aged
;
Molecular Sequence Data
;
Oncogene Proteins, Fusion
;
genetics
;
Polymerase Chain Reaction
;
methods
;
RNA-Binding Protein EWS
;
genetics
;
RNA-Binding Protein FUS
;
genetics
;
Sequence Analysis, DNA
;
Transcription Factor CHOP
;
genetics
;
Translocation, Genetic
8.Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy.
Kazuo FUSHIMI ; Charles LONG ; Neha JAYARAM ; Xiaoping CHEN ; Liming LI ; Jane Y WU
Protein & Cell 2011;2(2):141-149
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLDU). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.
Amino Acid Sequence
;
Amino Acid Substitution
;
DNA-Binding Proteins
;
genetics
;
metabolism
;
Humans
;
Mutation
;
Neurodegenerative Diseases
;
pathology
;
Protein Structure, Tertiary
;
RNA-Binding Protein FUS
;
chemistry
;
genetics
;
metabolism
;
Recombinant Proteins
;
genetics
;
metabolism
;
toxicity
;
Saccharomyces cerevisiae
;
growth & development
;
metabolism
;
Sarcosine
;
analogs & derivatives
;
pharmacology
;
Thiazoles
;
metabolism
9.Cytogenetics and molecular biology of liposarcoma.
Hua XIANG ; Jian WANG ; Xiong-zeng ZHU
Chinese Journal of Pathology 2003;32(2):165-167
CCAAT-Enhancer-Binding Proteins
;
genetics
;
Cytogenetic Analysis
;
Cytogenetics
;
methods
;
Extremities
;
Humans
;
Liposarcoma
;
etiology
;
genetics
;
Liposarcoma, Myxoid
;
etiology
;
genetics
;
Molecular Biology
;
methods
;
Oncogene Proteins, Fusion
;
genetics
;
RNA-Binding Protein FUS
;
genetics
;
Retroperitoneal Neoplasms
;
etiology
;
genetics
;
Ring Chromosomes
;
Soft Tissue Neoplasms
;
etiology
;
genetics
;
Transcription Factor CHOP
;
Translocation, Genetic
10.Detection of FUS-CHOP fusion gene in paraffin-embedded tissues and its clinicopathologic significance for myxoid/round cell liposarcomas.
Hua XIANG ; Jian WANG ; Meng-hong SUN ; Lei LU ; Ruo-hong SHUI ; Xiong-zeng ZHU
Chinese Journal of Pathology 2005;34(1):28-32
OBJECTIVETo explore the feasibility of detecting FUS-CHOP fusion gene in formalin-fixed, paraffin-embedded tissue and its application in the diagnosis and differential diagnosis of myxoid/round cell liposarcomas (MRCLs).
METHODSForty-four formalin-fixed, paraffin-embedded MRCL samples and 60 control cases (atypical/well-differentiated liposarcoma, pleomorphic liposarcoma, low-grade myofibrosarcoma, etc.) retrieved from the archival files were studied. Nested reverse transcription-polymerase chain reaction (RT-PCR) technique was employed to detect the FUS-CHOP mRNA expression, followed by DNA sequencing confirmation of the PCR product. Housekeeping gene PGK was used to assess the quality of the mRNA templates.
RESULTSPGK mRNA was detected in 93 of 104 tumor cases (89.4%), including 39 MRCLs cases (39/44, 88.6%) and 90% of the negative control cases. Type II FUS-CHOP fusion transcript was successfully detected in 20 out of 39 (51.3%) MRCL cases. Type I FUS-CHOP fusion transcript was not detected in any MRCLs in this study. All 60 negative control cases were negative for the FUS-CHOP fusion gene transcripts.
CONCLUSIONS(1) Nested RT-PCR can be used to detect FUS-CHOP mRNA in formalin-fixed, paraffin-embedded tissues. (2) FUS-CHOP is considered a specific molecular and genetic hallmark for MRCLs. Nested RT-PCR is a sensitive and specific technique in detecting FUS-CHOP gene, and can be used in the diagnosis and differential diagnosis of MRCLs.
Adolescent ; Adult ; Aged ; Biomarkers, Tumor ; Diagnosis, Differential ; Female ; Humans ; Liposarcoma ; metabolism ; pathology ; Liposarcoma, Myxoid ; metabolism ; pathology ; Lower Extremity ; Male ; Middle Aged ; Oncogene Proteins, Fusion ; biosynthesis ; genetics ; Paraffin Embedding ; RNA, Messenger ; biosynthesis ; genetics ; RNA-Binding Protein FUS ; biosynthesis ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; methods ; Soft Tissue Neoplasms ; metabolism ; pathology ; Transcription Factor CHOP ; biosynthesis ; genetics