1.Dimerization of retroviral RNA genomes.
Xu GAO ; Rong-Xian SHEN ; Wen-Hua XIANG ; Jian-Hua ZHOU
Chinese Journal of Virology 2008;24(6):487-491
Base Pairing
;
Dimerization
;
Genome, Viral
;
RNA, Viral
;
chemistry
;
genetics
;
Retroviridae
;
chemistry
;
genetics
2.Construction and expression of RNase-resisting virus-like particles containing partial sequence of alpha-fetoprotein messenger RNA.
Jian-Ming PENG ; Jin-Ming LI ; Ke-Qian XU ; Zhong-Fang WANG ; Lu-Nan WANG ; Wei DENG
Chinese Journal of Hepatology 2005;13(4):304-306
RNA, Messenger
;
biosynthesis
;
genetics
;
RNA, Viral
;
chemistry
;
genetics
;
Ribonucleases
;
biosynthesis
;
genetics
;
Virion
;
chemistry
;
genetics
;
alpha-Fetoproteins
;
biosynthesis
;
genetics
3.Screening of cellular proteins binding to the core region of hepatitis C virus RNA by ultraviolet cross-linking assay.
Hai-xia SU ; Jing-xia ZHANG ; Xiao-ning ZHAO ; Juan LU ; Yong-ping YAN
Chinese Journal of Hepatology 2005;13(9):656-659
OBJECTIVETo screen cellular proteins binding to the core region of hepatitis C virus (HCV) from human hepatoma cells.
METHODSUnlabeled and labeled RNA transcripts were prepared by in vitro transcription. Cytoplasmic extracts were prepared from human hepatoma cells HepG2. Ultraviolet (UV) cross-linking was used to screen the cellular proteins that would bind to the core region of HCV. Competition experiment was performed to confirm the specificity of the binding in which excess unlabeled RNA of HCV core region and plasmid RNA were used as competitors.
RESULTSTwo cellular proteins of 6.6 x 10(4) and 5.5 x 10(4) were found binding to the core region of HCV RNA by UV cross-linking assay. The unlabeled core region of HCV RNA could compete out this binding whereas the unlabeled plasmid RNA could not.
CONCLUSIONThe cellular proteins from HepG2 cells could bind to the core region of HCV RNA.
Binding Sites ; Cross-Linking Reagents ; chemistry ; Hepacivirus ; genetics ; metabolism ; RNA, Viral ; genetics ; metabolism ; Ultraviolet Rays ; Viral Core Proteins ; genetics ; metabolism
4.Design and preparation of the multimeric self-cleavable hammerhead ribozyme targeting apple scar skid viroid and its activity detection in vitro.
Jie-Lin SUN ; Chao-Chun ZHANG ; Li ZHOU ; Xi-Cai YANG
Chinese Journal of Biotechnology 2002;18(5):588-592
A self-cleaving hammerhead ribozyme gene containing a 14nt target sequence of ASSVd at the 3' end of hammerhead ribozyme was synthesized, amplified and cloned at the Xho I-Hind III site of pGEM7Zf(+). The ends produced by Xho I or Sal I can link together, thus the recognition sites of both enzymes vanish and can't be cut by either one. We used this property to get the recombinant plasmid bearing 2, 4, 6, 8, 10 and 12 copies of self-cleavable ribozyme respectively after successively sub-cloning five times. Linearized recombinat plasmid model catalyzed by T7 RNA polymerase was transcribed in vitro. The multimeric ribozyme molecules efficiently self-cleaved via cis-acting to release many ribozyme molecules It indicates that the concentration of ribozyme transcripts has been enhanced during transcription. Trans-cleavage reaction was carried out by incubating monomeric and multimeric ribozymes with same mol concentration and 32P labeled target ASSVd. Both ribozymes and target transcripts were mixed in 1:1 ratio. Autoradiograms showed the transcripts of multimeric ribozyme were substantially more effective against the ASSVd target RNA than the monomeric ribozymes. We confer that the multimeric self-clevable ribozyme is likely to provide more valuable application in vivo.
Malus
;
virology
;
RNA, Catalytic
;
chemistry
;
genetics
;
metabolism
;
RNA, Viral
;
metabolism
;
Viroids
;
metabolism
5.In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli.
Ruchao PENG ; Tengfei ZHU ; Babayemi Olawale OLADEJO ; Abednego Moki MUSYOKI ; Yingzi CUI ; Yi SHI ; Peiyi WANG ; George Fu GAO
Protein & Cell 2016;7(12):888-898
Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451-739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451-739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.
Ebolavirus
;
chemistry
;
genetics
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Gene Expression
;
Nucleocapsid
;
chemistry
;
genetics
;
metabolism
;
RNA, Viral
;
chemistry
;
genetics
;
metabolism
;
Recombinant Proteins
;
chemistry
;
genetics
;
metabolism
;
Virus Assembly
6.Complete genome sequence analysis of a newly isolated paramyxovirus Tianjin strain.
Mei LI ; Li-Ying SHI ; Li-Jun YUAN ; Xiao-Mian LI ; Qing WANG ; Wen-Xiu WANG
Chinese Journal of Virology 2008;24(1):1-6
Paramyxovirus Tianjin strain is the high-pathogenic virus to primate and might also cause human lower respiratory tract infection. To determine the genome structure, variation features and phylogenetic position, the complete nucleotide sequence of paramyxovirus Tianjin strain was analyzed. The homology comparison and phylogenetic analysis of the nucleotide and the deduced amino acid sequences among paramyxovirus Tianjin strain and the 28 strains in seven genera and the 7 unclassified viruses of Paramyxoviridae were performed. The results suggested that Tianjin strain is a member of the Respirovirus genus in the Paramyxovirinae, Paramyxoviridae and has the closest relationship to Sendai virus. Its genome length and composition are similar to the previously published Sendai virus except one extra glutamic acid residue increasing at the C terminus of Large protein due to the genomic RNA mutation at position A15240C. 440 unique nucleotide variations of Tianjin strain lead to 110 amino acid residue changes, making it differed from any other Sendai viruses. The phylogenetic analysis reveals paramyxovirus Tianjin strain doesn't belong to any of the three known evolution lineages of Sendai viruses and locates at a separate evolution branch. The obvious distinctions of genome nucleotide sequence, host tropism and pathogenicity suggest that paramyxovirus Tianjin strain might represent a novel genotype of Sendai virus.
Base Sequence
;
Evolution, Molecular
;
Genome, Viral
;
Paramyxoviridae
;
classification
;
genetics
;
Phylogeny
;
Polymerase Chain Reaction
;
RNA, Viral
;
chemistry
;
Sendai virus
;
genetics
7.Structure and function of 3'- untranslated region in picornavirus.
Rui-Ying LIANG ; Chuan-Feng LI ; Chun-Chun MENG ; Zong-Yan CHEN ; Guang-Qing LIU
Chinese Journal of Virology 2014;30(4):463-469
Both sides of the picornavirus genome have 5'-untranslated region (5'UTR) and 3'- untranslated region (3'UTR). This study demontrated that both the 5'-and 3'-UTR can form complex structures, such as stem-loop, clover and pseudoknot structure, These structures play an important role in the regulaton of the replication and translation of the viruses. This article reviewed the progress of research on the structure and function of picornavirus' 3'-UTR over recent years.
3' Untranslated Regions
;
Animals
;
Humans
;
Nucleic Acid Conformation
;
Picornaviridae
;
chemistry
;
genetics
;
metabolism
;
Picornaviridae Infections
;
virology
;
RNA, Viral
;
chemistry
;
genetics
;
metabolism
8.Hepatitis c virus genotype research by ABC programs of 5'-NCR restriction endonuclease digestion.
Guo-hua QIU ; Shao-cai DU ; Nan-xiong SUN ; Peng YOU ; Xiao-feng FAN ; Yong-xiang ZHANG ; Lai WEI
Chinese Journal of Hepatology 2004;12(4):237-239
OBJECTIVEIn order to fully understand hepatitis c virus (HCV) genotype 3b, 1a, 2b and 6a infection in China, We built HCV 5'-noncoding region (5'-NCR) of different genotypes and subtypes.
METHODSThe classification HCV into variable genotypes (subtypes) was carried on by programs A, B and C A. Using a combination of three restriction endonuclease BHH' (BsrB I, Hae II, Hinf I) digestions at the same time. The distinct genotypes were classified into 5 groups: genotype 1 (1a, 1b), 6a, 2 (2a, 2b), genotype 3 (3a, 3b), genotype4 (4a). B. With regard to genotype 1, we could distinguish subtype 1a from 1b using BstU I digestion. C. Using restriction endonuclease Hae III, genotype 2a, 2b, 3b, 4a, 6a are differentiated respectively.
RESULTS(1) HCV genotype 1a, 1b, 2a, 2b, 3a, 3b, 4a, 6a are fully discriminated by comparison with the genotypes regular samples. (2) Of the 93 patients, HCV genotype distribution in China was 66.67% for 1b, 18.28% for 2a, 3.23% for 1b/2b, 3b, 2b respectively. 2.15% for 2a/2b, 1b/2a respectively. 1.08% for 1a.
CONCLUSIONThis research indicated that adoption of HCV 5'-NCR A B C restriction endonuclease digestions techniques, might be sensitive and efficient to detect HCV and discriminate HCV genotype (subtypes) 1a to 6a.
5' Untranslated Regions ; chemistry ; DNA Restriction Enzymes ; Genotype ; Hepacivirus ; classification ; genetics ; RNA, Viral ; analysis
9.A cellular protein specifically binds to the 3'-terminal sequences of hepatitis C virus intermediate negative-strand RNA.
Wei WANG ; Qingli DENG ; Kaihong HUANG ; Zhaohui DUAN ; Jing SHAO ; Zhiqing HUANG ; Zhiming HUANG
Chinese Medical Journal 2003;116(6):932-936
OBJECTIVETo study the mechanism of the cellular proteins involved in the process of replication of hepatitis C virus (HCV) negative-strand RNA.
METHODSUltraviolet (UV) cross-linking was used to identify the cellular proteins that would bind to the 3'-end of HCV negative-strand RNA. Competition experiment was used to confirm the specificity of this binding, in which excess nonhomologous protein and RNA transcripts were used as competitors. The required binding sequence was determined by mapping, then the binding site was predicted through secondary structure analysis.
RESULTSA cellular protein of 45 kD (p45) was found to bind specifically to the 3'-end of HCV negative-strand RNA by UV cross-linking. Nonhomologous proteins and RNA transcripts could not compete out this binding, whereas the unlabeled 3'-end of HCV negative-strand RNA could. Mapping of the protein-binding site suggested that the 3'-end 131-278nt of HCV negative-strand RNA was the possible protein-binding region. Analysis of RNA secondary structure presumed that the potential binding site was located at 194-GAAAGAAC-201.
CONCLUSIONThe cellular protein p45 could specifically bind to the secondary structure of the 3'-end of HCV intermediate negative-strand RNA, and may play an important role in HCV RNA replication.
Binding Sites ; Hepacivirus ; genetics ; Nucleic Acid Conformation ; RNA, Viral ; chemistry ; metabolism ; RNA-Binding Proteins ; analysis ; metabolism ; Virus Replication
10.Identification of MicroRNA-like Viral Small RNAs from AaeDV.
Yanhai WANG ; Jiang WU ; Jinbao GU
Chinese Journal of Virology 2015;31(5):537-541
Several virus families have been shown to encode microRNAs (miRNAs), which have roles in the infection and replication of viruses in host cells. These virus-encoded miRNAs are identified in double-stranded DNA virus (dsDNA virus) and in several RNA virus families, but not in single-stranded DNA virus (ssDNA virus). We used a bioinformatics approach based on VMir, miRNAFold and MaturePred software to predict virus-encoded miRNA-like small RNAs from the genome of a ssDNA virus: Aedes aegypti densovirus (AaeDV). Northern blotting and stem-loop reverse transcription-polymerase chain reaction (RT-PCR) were used to detect predicted small RNAs. A miRNA-like small RNA termed "AaeDVMD" was identified by stem-loop RT-PCR from predicted candidates. This is the first report demonstrating that a ssDNA virus can encode miRNA-like small RNAs. These data will aid further exploration of the interaction between the AaeDV and its mosquito host.
Aedes
;
virology
;
Animals
;
Base Sequence
;
Computational Biology
;
Densovirinae
;
chemistry
;
genetics
;
metabolism
;
MicroRNAs
;
chemistry
;
genetics
;
metabolism
;
Molecular Sequence Data
;
RNA, Viral
;
chemistry
;
genetics
;
metabolism