1.Identification and expression of non-coding RNAs NC28 and NC119 in human tumors.
Zhen-yuan SUN ; Yan-hua YUAN ; Chang-ning LIU ; Yi ZHAO ; Jie-fu HUANG ; Xin-ting SANG ; Yi-lei MAO ; Xin LU ; Yu WANG ; Yong-sheng CHANG ; Hai-tao ZHAO
Acta Academiae Medicinae Sinicae 2007;29(5):618-621
OBJECTIVETo explore and identify the non-coding RNAs related to tumors.
METHODSWe used RT-PCR and Northern blot to analyze non-coding RNAs in tumor tissues and cell lines.
RESULTSTwo predicted non-coding RNAs were confirmed to be expressed in cancer tissues and cell lines by RT-PCR and DNA sequencing. We detected the expression of two non-coding RNA transcripts by Northern blot. The length of NC28 was about 1800 nt, and that of NC119 was about 1200nt.
CONCLUSIONSNC28 and NC119 have a tumor-associated expression pattern. The non-coding RNAs may play a role in the development of tumors.
Cell Line, Tumor ; Humans ; Neoplasms ; metabolism ; RNA, Untranslated ; biosynthesis
2.Current research advances of the relationship between non-coding RNAs and tumor.
Keshi LI ; Junming GUO ; Bingxiu XIAO ; Hui ZHOU
Chinese Journal of Medical Genetics 2010;27(1):56-59
Non-coding RNAs (ncRNAs) are RNA molecules that exclude mRNA, tRNA and rRNA, and do not code proteins. ncRNAs play a various roles in the regulation of important vital activities in many organisms such as bacteria, fungi and mammals. Recent researches have shown that ncRNAs, as oncogenes or tumor suppressor genes, have tremendous impacts on the occurrence and development of tumors. Meanwhile, ncRNAs have become a new type of tumor markers and new targets for cancer treatment. This review describes the research progresses of ncRNAs such as small interference RNA and microRNA, and their roles in carcinogenesis.
Animals
;
Humans
;
Neoplasms
;
genetics
;
metabolism
;
therapy
;
RNA Interference
;
RNA, Untranslated
;
genetics
;
metabolism
;
therapeutic use
3.The roles of ncRNAs and histone-modifiers in regulating breast cancer stem cells.
Zhiju ZHAO ; Shu LI ; Erwei SONG ; Suling LIU
Protein & Cell 2016;7(2):89-99
Cancer stem cells (CSCs), a subpopulation of cancer cells with ability of initiating tumorigenesis, exist in many kinds of tumors including breast cancer. Cancer stem cells contribute to treatment resistance and relapse. Conventional treatments only kill differentiated cancer cells, but spare CSCs. Combining conventional treatments with therapeutic drugs targeting to CSCs will eradicate cancer cells more efficiently. Studying the molecular mechanisms of CSCs regulation is essential for developing new therapeutic strategies. Growing evidences showed CSCs are regulated by non-coding RNA (ncRNA) including microRNAs and long non-coding RNAs (lncRNAs), and histone-modifiers, such as let-7, miR-93, miR-100, HOTAIR, Bmi-1 and EZH2. Herein we review the roles of microRNAs, lncRNAs and histone-modifiers especially Polycomb family proteins in regulating breast cancer stem cells (BCSCs).
Breast Neoplasms
;
genetics
;
metabolism
;
pathology
;
Histones
;
metabolism
;
Humans
;
Neoplastic Stem Cells
;
metabolism
;
RNA, Untranslated
;
genetics
;
metabolism
4.Alternative role of noncoding RNAs: coding and noncoding properties.
Gui-Zhen ZHENG ; Wei LI ; Zhi-Yong LIU
Journal of Zhejiang University. Science. B 2019;20(11):920-927
Noncoding RNAs (ncRNAs) have played a critical role in cellular biological functions. Recently, some peptides or proteins originating from annotated ncRNAs were identified in organism development and various diseases. Here, we briefly review several novel peptides translated by annotated ncRNAs and related key functions. In addition, we summarize the potential mechanism of bifunctional ncRNAs and propose a specific "switch" triggering the transformation from the noncoding to the coding state under certain stimuli or cellular stress. The coding properties of ncRNAs and their peptide products may provide a novel horizon in proteomic research and can be regarded as a potential therapeutic target for the treatment of various diseases.
Animals
;
Calcium/metabolism*
;
Humans
;
Open Reading Frames
;
Protein Biosynthesis
;
RNA, Messenger/genetics*
;
RNA, Untranslated/physiology*
5.Role and mechanism of non-coding RNA in the pathogenesis of acute kidney injury.
Peng WANG ; Miao-Miao ZHOU ; Jing NIE
Acta Physiologica Sinica 2022;74(1):39-46
Acute kidney injury (AKI) is a common clinical syndrome and an independent risk factor of chronic kidney disease and end-stage renal failure. At present, the treatments of AKI are still very limited and the morbidity and mortality of AKI are rising. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs (circRNAs), are RNAs that are transcribed from the genome, but not translated into proteins. It has been widely reported that ncRNA is involved in AKI caused by ischemia reperfusion injury (IRI), drugs and sepsis through different molecular biological mechanisms, such as apoptosis and oxidative stress response. Therefore, ncRNAs are expected to become a new target for clinical prevention and treatment of AKI and a new biomarker for early warning of the occurrence and prognosis of AKI. Here, the role and mechanism of ncRNA in AKI and the research progress of ncRNA as biomarkers are reviewed.
Acute Kidney Injury/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Circular
;
RNA, Long Noncoding/genetics*
;
RNA, Untranslated/genetics*
;
Reperfusion Injury/genetics*
6.The Function of the Vitamin D Receptor and a Possible Role of Enhancer RNA in Epigenomic Regulation of Target Genes: Implications for Bone Metabolism
Shun SAWATSUBASHI ; Koichi NISHIMURA ; Jinichi MORI ; Alexander KOUZMENKO ; Shigeaki KATO
Journal of Bone Metabolism 2019;26(1):3-12
Vitamin D (VD) is essential for bone health, and VD or its analogues are widely used in clinics to ameliorate bone loss. The targets and mode of VD anti-osteoporotic actions appear to be different from those of other classes of drugs modulating bone remodeling. VD exerts its biological activities through the nuclear VD receptor (VDR)-mediated transcriptional regulation of target mRNA and non-coding RNA genes. VD-induced gene regulation involves epigenetic modifications of chromatin conformation at the target loci as well as reconfiguration of higher-order chromosomal organization through VDR-mediated recruitment of various regulatory factors. Enhancer RNAs (eRNA), a class of non-coding enhancer-derived RNAs, have recently emerged as VDR target gene candidates that act through reorganization of chromatin looping to induce enhancer-promoter interaction in activation of mRNA-encoding genes. This review outlines the molecular mechanisms of VD actions mediated by the VDR and suggests novel function of eRNAs in VDR transactivation.
Bone Remodeling
;
Chromatin
;
Epigenomics
;
Metabolism
;
Receptors, Calcitriol
;
RNA
;
RNA, Messenger
;
RNA, Untranslated
;
Transcriptional Activation
;
Vitamin D
;
Vitamins
7.Advances in epigenetics in ischemic stroke.
Dan-Hong LIU ; Xia-Jun XIONG ; Jun LIAO ; Zhi-Gang MEI ; Jin-Wen GE ; Meng-Zhen WEI
China Journal of Chinese Materia Medica 2022;47(17):4551-4559
Ischemic stroke is one of the main causes of death and long-term disability worldwide, which seriously affects the quality of life of patients and brings a heavy economic burden to families and society. Epidemiological studies have shown that stroke has become the second leading cause of death and major disabling disease in the world, with the characteristics of high morbidity, high recurrence, and high mortality. Epigenetic mechanism is the molecular process where gene expression and function in each cell are dynamically regulated and interconnected and a biological mechanism that changes genetic performance without changing the DNA sequence, including DNA methylation, histone modifications, and non-coding RNA. However, the research on epigenetics is currently focused on other diseases such as tumors. Recent studies have found that epigenetics has received extensive attention in the past few decades as a key factor involved in the pathophysiological process of ischemic stroke. The present study introduced the mediation of epigenetics in the induction of stroke, summarized the potential drug targets for these mechanisms in the treatment of stroke, and further explored the significance of traditional Chinese medicine(TCM) against cerebral ischemia injury based on TCM classification of stroke.
DNA Methylation
;
Epigenesis, Genetic
;
Humans
;
Ischemic Stroke/genetics*
;
Quality of Life
;
RNA, Untranslated/metabolism*
;
Stroke/genetics*
8.Structural Insights into N-methyladenosine (mA) Modification in the Transcriptome.
Genomics, Proteomics & Bioinformatics 2018;16(2):85-98
More than 100 types of chemical modifications in RNA have been well documented. Recently, several modifications, such as N-methyladenosine (mA), have been detected in mRNA, opening the window into the realm of epitranscriptomics. The mA modification is the most abundant modification in mRNA and non-coding RNA (ncRNA). At the molecular level, mA affects almost all aspects of mRNA metabolism, including splicing, translation, and stability, as well as microRNA (miRNA) maturation, playing essential roles in a range of cellular processes. The mA modification is regulated by three classes of proteins generally referred to as the "writer" (adenosine methyltransferase), "eraser" (mA demethylating enzyme), and "reader" (mA-binding protein). The mA modification is reversibly installed and removed by writers and erasers, respectively. Readers, which are members of the YT521-B homology (YTH) family proteins, selectively bind to RNA and affect its fate in an mA-dependent manner. In this review, we summarize the structures of the functional proteins that modulate the mA modification, and provide our insights into the mA-mediated gene regulation.
Adenosine
;
analogs & derivatives
;
metabolism
;
Animals
;
Gene Expression Regulation
;
Humans
;
Methyltransferases
;
chemistry
;
metabolism
;
RNA, Messenger
;
chemistry
;
metabolism
;
RNA, Untranslated
;
chemistry
;
metabolism
;
RNA-Binding Proteins
;
chemistry
;
metabolism
;
Transcriptome
9.microRNAs: tiny RNA molecules, huge driving forces to move the cell.
Protein & Cell 2010;1(10):916-926
Cell migration or movement is a highly dynamic cellular process, requiring precise regulation that is essential for a variety of biological processes. microRNAs (miRNAs) are a class of tiny non-coding RNA molecules that function as critical post-transcriptional regulators of gene expression. Emerging evidence demonstrates that miRNAs play important roles in cell migration and directly contribute to extracellular matrix (ECM) remodeling, cell adhesion, and cell signalling that controls cell migration by targeting a large number of protein-coding genes. Accordingly, the dysregulation of these miRNAs has been linked to several migration-related diseases. In this review, we summarize and highlight the recent advances concerning the roles and validated targets of miRNAs in the control of cell movement.
Animals
;
Cell Movement
;
genetics
;
Gene Expression
;
Gene Expression Regulation
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
physiology
;
RNA
;
genetics
;
RNA, Untranslated
;
genetics
10.Noncoding RNAs in cancer and cancer stem cells.
Tianzhi HUANG ; Angel ALVAREZ ; Bo HU ; Shi-Yuan CHENG
Chinese Journal of Cancer 2013;32(11):582-593
In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potentially useful diagnostic tools.
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Neoplasms
;
genetics
;
metabolism
;
pathology
;
therapy
;
Neoplastic Stem Cells
;
metabolism
;
RNA, Long Noncoding
;
genetics
;
metabolism
;
RNA, Untranslated
;
genetics
;
metabolism