1.Screening, domestication and identification of intestinal uric acid degrading bacteria in low uric acid population.
Tingting TIAN ; Wujin CHEN ; Meiting LIANG ; MAYINA KAHAER ; Rui LI ; Yuping SUN
Journal of Biomedical Engineering 2022;39(4):792-797
As the largest ecosystem of human body, intestinal microorganisms participate in the synthesis and metabolism of uric acid. Developing and utilizing intestinal bacteria to degrade uric acid might provide new ideas for the treatment of hyperuricemia. The fecal samples of people with low uric acid were inoculated into uric acid selective medium with the concentration of 1.5 mmol/L for preliminary screening, and the initially screened strains that may have degradation ability were domesticated by concentration gradient method, and the strains with high uric acid degradation rate were identified by 16S rRNA sequencing method. A strain of high-efficiency uric acid degrading bacteria was screened and domesticated from the feces of people with low uric acid. The degradation rate of uric acid could reach 50.2%. It was identified as Escherichia coli. The isolation and domestication of high efficient uric acid degrading strains can not only provide scientific basis for the study of the mechanism of intestinal microbial degradation of uric acid, but also reserve biological strains for the treatment of hyperuricemia and gout in the future.
Bacteria/metabolism*
;
Domestication
;
Ecosystem
;
Escherichia coli/genetics*
;
Humans
;
Hyperuricemia
;
RNA, Ribosomal, 16S/metabolism*
;
Uric Acid/metabolism*
2.Change of bacterial community structure during cellulose degradation by the microbial consortium.
Shiqi AI ; Yiquan ZHAO ; Zhiyuan SUN ; Yamei GAO ; Lei YAN ; Hongzhi TANG ; Weidong WANG
Chinese Journal of Biotechnology 2018;34(11):1794-1808
In order to clarify dynamic change of microbial community composition and to identify key functional bacteria in the cellulose degradation consortium, we studied several aspects of the biodegradation of filter papers and rice straws by the microbial consortium, the change of substrate degradation, microbial biomass and pH of fermentation broth. We extracted total DNA of the microbial consortium in different degradation stages for high-throughput sequencing of amplicons of bacterial 16 S rRNA genes. Based on the decomposition characteristics test, we defined the 12th, 72nd and 168th hours after inoculation as the initial stage, peak stage and end stage of degradation, respectively. The microbial consortium was mainly composed of 1 phylum, 2 classes, 2 orders, 7 families and 11 genera. With cellulose degradation, bacteria in the consortium showed different growth trends. The relative abundance of Brevibacillus and Caloramator decreased gradually. The relative abundance of Clostridium, Bacillus, Geobacillus and Cohnella increased gradually. The relative abundance of Ureibacillus, Tissierella, Epulopiscium was the highest in peak stage. The relative abundance of Paenibacillus and Ruminococcus did not change obviously in each stage. Above-mentioned 11 main genera all belonged to Firmicutes, which are thermophilic, broad pH adaptable and cellulose or hemicellulose degradable. During cellulose degradation by the microbial consortium, aerobic bacteria were dominant functional bacteria in the initial stage. However, the relative abundance of anaerobic bacteria increased gradually in middle and end stage, and replaced aerobic bacteria to become main bacteria to degrade cellulose.
Bacteria
;
classification
;
metabolism
;
Biodegradation, Environmental
;
Cellulose
;
metabolism
;
DNA, Bacterial
;
genetics
;
Microbial Consortia
;
RNA, Ribosomal, 16S
;
genetics
3.Structure and function of a novel thermostable pullulanase.
Jie ZHEN ; Zheng HU ; Shufang LI ; Jianyong XU ; Hui SONG
Chinese Journal of Biotechnology 2014;30(1):119-128
Research on novel pullulanase has major significance on the domestic industrialization of pullulanase and the breakdown of foreign monopoly. A thermophilic bacteria LM 18-11 producing thermostable pullulanase was isolated from Lunma hot springs of Yunnan province. It was identified as Anoxybacillus sp. by 16S rDNA phylogenetic analysis. Full-length pullulanase gene was cloned from Anoxybacillus sp. LM18-11. The optimum temperature of the pullulanase was between 55 and 60 degrees C with a half-life as long as 48 h at 60 degrees C; and its optimum pH was between 5.6 and 6.4. V(max) and K(m) of the pullulanase was measured as 750 U/mg and 1.47 mg/mL, which is the highest specific activity reported so far. The pullulanase crystals structure showed a typical alpha-amylase family structure. The N-terminal has a special substrate binding domain. Activity and substrate binding were decreased when the domain was deleted, the V(max) and K(m) were 324 U/mg and 1.95 mg/mL, respectively. The pullulanase was highly heterologous expressed in Bacillus subtilis by P43 promoter. The extracellular enzyme activity was 42 U/mL, which increased more than 40 times compared to the initial strain. This pullulanase has good application prospects.
Anoxybacillus
;
classification
;
enzymology
;
China
;
Glycoside Hydrolases
;
metabolism
;
Hydrogen-Ion Concentration
;
Phylogeny
;
RNA, Ribosomal, 16S
;
genetics
;
Temperature
4.Periodontitis may induce gut microbiota dysbiosis via salivary microbiota.
Jun BAO ; Lili LI ; Yangheng ZHANG ; Min WANG ; Faming CHEN ; Shaohua GE ; Bin CHEN ; Fuhua YAN
International Journal of Oral Science 2022;14(1):32-32
The aim of this study was to identify whether periodontitis induces gut microbiota dysbiosis via invasion by salivary microbes. First, faecal and salivary samples were collected from periodontally healthy participants (PH group, n = 16) and patients with severe periodontitis (SP group, n = 21) and analysed by 16S ribosomal RNA sequencing. Significant differences were observed in both the faecal and salivary microbiota between the PH and SP groups. Notably, more saliva-sourced microbes were observed in the faecal samples of the SP group. Then, the remaining salivary microbes were transplanted into C57BL6/J mice (the C-PH group and the C-SP group), and it was found that the composition of the gut microbiota of the C-SP group was significantly different from that of the C-PH group, with Porphyromonadaceae and Fusobacterium being significantly enriched in the C-SP group. In the colon, the C-SP group showed significantly reduced crypt depth and zonula occludens-1 expression. The mRNA expression levels of pro-inflammatory cytokines, chemokines and tight junction proteins were significantly higher in the C-SP group. To further investigate whether salivary bacteria could persist in the intestine, the salivary microbiota was stained with carboxyfluorescein diacetate succinimidyl ester and transplanted into mice. We found that salivary microbes from both the PH group and the SP group could persist in the gut for at least 24 h. Thus, our data demonstrate that periodontitis may induce gut microbiota dysbiosis through the influx of salivary microbes.
Animals
;
Dysbiosis
;
Gastrointestinal Microbiome
;
Humans
;
Mice
;
Mice, Inbred C57BL
;
Microbiota
;
Periodontitis
;
RNA, Ribosomal, 16S/metabolism*
5.Design, synthesis, and bioassay of 5-epi-aminoglycosides.
Ribai YAN ; Youhong NIU ; Yuheng LIU ; Junfeng DENG ; Xinshan YE
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):854-862
For the purpose of seeking new antibiotics, researchers usually modify the already-existing ones. However, this strategy has been extensively used and is close to its limits, especially in the case of aminoglycosides, and it is difficult to find a proper aminoglycoside antibiotic for novel modification. In this paper, we reported the design, synthesis, and evaluation of a series of 5-epi-neamine derivatives based on the structural information of bacterial 16S RNA A-site binding with aminoglycosides. Bioassay results showed that our design strategy was feasible. Our study offers a new way to search for structurally novel aminoglycosides. Meanwhile, our study provides valuable structure-activity relationship information, which will lead to better understanding and exploitation of the drug target, and improved development of new aminoglycoside antibiotics.
Aminoglycosides/chemistry*
;
Anti-Bacterial Agents/chemistry*
;
RNA, Ribosomal, 16S/metabolism*
;
Structure-Activity Relationship
;
Biological Assay
6.Screening and identification of a polyurethane-degrading bacterium G-11 and its plastic degradation characteristics.
Zhitong JIANG ; Xue CHEN ; Jinhui LEI ; Huizhen XUE ; Bo ZHANG ; Xiaofan XU ; Huijing GENG ; Zhoukun LI ; Xin YAN ; Weiliang DONG ; Hui CAO ; Zhongli CUI
Chinese Journal of Biotechnology 2023;39(5):1963-1975
Polyurethane (PUR) plastics is widely used because of its unique physical and chemical properties. However, unreasonable disposal of the vast amount of used PUR plastics has caused serious environmental pollution. The efficient degradation and utilization of used PUR plastics by means of microorganisms has become one of the current research hotspots, and efficient PUR degrading microbes are the key to the biological treatment of PUR plastics. In this study, an Impranil DLN-degrading bacteria G-11 was isolated from used PUR plastic samples collected from landfill, and its PUR-degrading characteristics were studied. Strain G-11 was identified as Amycolatopsis sp. through 16S rRNA gene sequence alignment. PUR degradation experiment showed that the weight loss rate of the commercial PUR plastics upon treatment of strain G-11 was 4.67%. Scanning electron microscope (SEM) showed that the surface structure of G-11-treated PUR plastics was destroyed with an eroded morphology. Contact angle and thermogravimetry analysis (TGA) showed that the hydrophilicity of PUR plastics increased along with decreased thermal stability upon treatment by strain G-11, which were consistent with the weight loss and morphological observation. These results indicated that strain G-11 isolated from landfill has potential application in biodegradation of waste PUR plastics.
Plastics/metabolism*
;
Polyurethanes/chemistry*
;
RNA, Ribosomal, 16S
;
Bacteria/genetics*
;
Biodegradation, Environmental
7.Positive effects of Xuebijing injection on intestinal microbiota and metabolite spectrum in septic rats.
Xianfei DING ; Yangyang YUAN ; Ran TONG ; Kun WANG ; Shaohua LIU ; Xueyan QI ; Xiaojuan ZHANG ; Jiebin CAO ; Tongwen SUN
Chinese Critical Care Medicine 2023;35(7):690-695
OBJECTIVE:
To explore the effect of Xuebijing injection on inflammation in sepsis by regulating intestinal microbiota and its metabolites.
METHODS:
A total of 45 male Sprague-Dawley (SD) rats were randomly divided into Sham operation group (Sham group), cecal ligation and perforation (CLP) induced sepsis group (CLP group), and Xuebijing intervention group (XBJ group, 4 mL/kg Xuebijing injection was injected intraperitoneally at 1 hour after CLP), with 15 rats in each group. The survival of rats was observed at 24 hours after operation and sacrificed. Feces were collected for 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analysis.
RESULTS:
At 24 hours after operation, all rats in the Sham group survived, the mortality of rats in the XBJ group was lower than that in the CLP group [47% (7/15) vs. 60% (9/15), P > 0.05]. Compared with the Sham group, the diversity of gut microbiota in the CLP group decreased, the dominant flora changed, and the abundance of inflammation-related flora increased. Xuebijing improved the changes in gut microbiota caused by sepsis, and α diversity showed an increasing trend (Ace index: 406.0±22.5 vs. 363.2±38.2, Chao1 index: 409.7±21.8 vs. 362.4±42.5, both P > 0.05). Restrictive constrained principal coordinate analysis (cPCoA) showed a high similarity in gut microbiota among the same group of rats. The CLP group was dominated by Bacteroidetes, while the Sham and XBJ groups were dominated by Firmicutes. In addition, compared with the CLP group, Xuebijing treatment increased the abundance of beneficial bacteria in septic rats, such as Verrucomicrobia, Akkermansia and Lactobacillus. LC-MS and orthogonal partial least squares discriminant analysis (OPLS-DA) showed that there were 12 main differential metabolites among the three groups, and there were certain correlations between these metabolites, which were related to amino acid and lipid metabolism. Correlation analysis showed a significant correlation between changes in metabolites and microbial communities.
CONCLUSIONS
Xuebijing can improve the survival rate of septic rats, regulate the composition of intestinal flora and related metabolites, which provides a new pathophysiological mechanism for Xuebijing in the treatment of sepsis.
Rats
;
Male
;
Animals
;
Rats, Sprague-Dawley
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Sepsis/metabolism*
;
Inflammation
8.Sequence analysis of 16S rDNA and pmoCAB gene cluster of trichloroethylene-degrading methanotroph.
Yunru ZHANG ; Huaqing CHEN ; Yanhui GAO ; Zhilin XING ; Tiantao ZHAO
Chinese Journal of Biotechnology 2014;30(12):1912-1923
Methanotrophs could degrade methane and various chlorinated hydrocarbons. The analysis on methane monooxygenase gene cluster sequence would help to understand its catalytic mechanism and enhance the application in pollutants biodegradation. The methanotrophs was enriched and isolated with methane as the sole carbon source in the nitrate mineral salt medium. Then, five chlorinated hydrocarbons were selected as cometabolic substrates to study the biodegradation. The phylogenetic tree of 16S rDNA using MEGE5.05 software was constructed to identify the methanotroph strain. The pmoCAB gene cluster encoding particulate methane monooxygenase (pMMO) was amplified by semi-nested PCR in segments. ExPASy was performed to analyze theoretical molecular weight of the three pMMO subunits. As a result, a strain of methanotroph was isolated. The phylogenetic analysis indicated that the strain belongs to a species of Methylocystis, and it was named as Methylocystis sp. JTC3. The degradation rate of trichloroethylene (TCE) reached 93.79% when its initial concentration was 15.64 μmol/L after 5 days. We obtained the pmoCAB gene cluster of 3 227 bp including pmoC gene of 771 bp, pmoA gene of 759 bp, pmoB gene of 1 260 bp and two noncoding sequences in the middle by semi-nested PCR, T-A cloning and sequencing. The theoretical molecular weight of their corresponding gamma, beta and alpha subunit were 29.1 kDa, 28.6 kDa and 45.6 kDa respectively analyzed using ExPASy tool. The pmoCAB gene cluster of JTC3 was highly identical with that of Methylocystis sp. strain M analyzed by Blast, and pmoA sequences is more conservative than pmoC and pmoB. Finally, Methylocystis sp. JTC3 could degrade TCE efficiently. And the detailed analysis of pmoCAB from Methylocystis sp. JTC3 laid a solid foundation to further study its active sites features and its selectivity to chlorinated hydrocarbon.
Methylocystaceae
;
classification
;
metabolism
;
Multigene Family
;
Oxygenases
;
genetics
;
Phylogeny
;
Polymerase Chain Reaction
;
RNA, Ribosomal, 16S
;
genetics
;
Sequence Analysis, DNA
;
Trichloroethylene
;
metabolism
9.Bioremediation of Hexavalent Chromium Pollution by Sporosarcina saromensis M52 Isolated from Offshore Sediments in Xiamen, China.
Ran ZHAO ; Bi WANG ; Qing Tao CAI ; Xiao Xia LI ; Min LIU ; Dong HU ; Dong Bei GUO ; Juan WANG ; Chun FAN ;
Biomedical and Environmental Sciences 2016;29(2):127-136
OBJECTIVECr(VI) removal from industrial effluents and sediments has attracted the attention of environmental researchers. In the present study, we aimed to isolate bacteria for Cr(VI) bioremediation from sediment samples and to optimize parameters of biodegradation.
METHODSStrains with the ability to tolerate Cr(VI) were obtained by serial dilution and spread plate methods and characterized by morphology, 16S rDNA identification, and phylogenetic analysis. Cr(VI) was determined using the 1,5-diphenylcarbazide method, and the optimum pH and temperature for degradation were studied using a multiple-factor mixed experimental design. Statistical analysis methods were used to analyze the results.
RESULTSFifty-five strains were obtained, and one strain (Sporosarcina saromensis M52; patent application number: 201410819443.3) having the ability to tolerate 500 mg Cr(VI)/L was selected to optimize the degradation conditions. M52 was found be able to efficiently remove 50-200 mg Cr(VI)/L in 24 h, achieving the highest removal efficiency at pH 7.0-8.5 and 35 °C. Moreover, M52 could completely degrade 100 mg Cr(VI)/L at pH 8.0 and 35 °C in 24 h. The mechanism involved in the reduction of Cr(VI) was considered to be bioreduction rather than absorption.
CONCLUSIONThe strong degradation ability of S. saromensis M52 and its advantageous functional characteristics support the potential use of this organism for bioremediation of heavy metal pollution.
Biodegradation, Environmental ; China ; Chromium ; metabolism ; Geologic Sediments ; microbiology ; RNA, Ribosomal, 16S ; genetics ; Sporosarcina ; genetics ; isolation & purification ; metabolism
10.Isolation and characterization of a new heterotrophic nitrifying Bacillus sp. strain.
Yan LIN ; Hai-Nan KONG ; Yi-Liang HE ; Bin-Bin LIU ; Yuhie INAMORI ; Li YAN
Biomedical and Environmental Sciences 2007;20(6):450-455
OBJECTIVETo characterize the heterotrophic nitrifying bacteria.
METHODSThe bacteria were isolated from membrane bioreactor for treating synthetic wastewater using the method newly introduced in this study. Fluorescence in situ hybridization (FISH) was used to validate the nonexistence of autotrophic ammonia oxidizers and nitrite oxidizers. Batch tests were carried out to investigate the capability of heterotrophic nitrification by the pure culture. Phylogenetic analysis of the pure culture was performed.
RESULTSA heterotrophic nitrifier, named Bacillus sp. LY, was newly isolated from the membrane bioreactor system in which the efficiency of TN removal was up to 80%. After 24-day, incubation, the removal efficiency of COD by Bacillus sp. LY was 71.7%. The ammonium nitrogen removal rate after assimilation nearly ceased by Bacillus sp. LY was 74.7%. The phylogenetic tree of Bacillus sp. LY and the neighbouring nitrifiers were given.
CONCLUSIONSThe batch test results indicate that Bacillus sp. LY can utilize the organic carbon as the source of assimilation when it grows on glucose and ammonium chloride medium accompanying the formation of oxidized-nitrogen. It also can denitrify nitrate while nitrifying. Bacillus sp. LY may become a new bacterial resource for heterotrophic nitrification and play a bioremediation role in nutrient removal.
Bacillus ; classification ; genetics ; isolation & purification ; metabolism ; Base Sequence ; DNA Primers ; DNA, Ribosomal ; genetics ; Environmental Restoration and Remediation ; methods ; Nitrates ; metabolism ; Phylogeny ; RNA, Ribosomal, 16S ; genetics