1.Subgenus classification of Acanthamoeba by riboprinting.
Dong Il CHUNG ; Hak Sun YU ; Mee Yul HWANG ; Tae Ho KIM ; Tae Ook KIM ; Ho Cheol YUN ; Hyun Hee KONG
The Korean Journal of Parasitology 1998;36(2):69-80
Subgenus classification of Acanthamoeba remains uncertain. Twenty-three reference strains of Acanthamoeba including 18 (neo)type-strains were subjected for classification at the subgenus level by riboprinting. PCR/RFLP analysis of 18S rRNA gene (rDNA). On the dendrogram reconstructed on the basis of riboprint analyses, two type-strains (A. astronyxis and A. tubiashi) of morphological group 1 diverged early from the other strains and were quite distinct from each other. Four type-strains of morphological group 3, A. culbertsoni, A. palestinensis, A. healyi were considered taxonomically valid, but A. pustulosa was regarded as an invalid synonym of A. palestinensis. Strains of morphological group 2 were classified into 6 subgroups. Among them, A. griffini which has an intron in its 18S rDNA was the most divergent from the remaining strains. Acanthamoeba castellanii Castellani, A. quina Vil3, A. lugdunensis L3a, A. polyphaga Jones, A. triangularis SH621, and A. castellanii Ma strains belonged to a subgroup, A. castellanii complex. However, A. quina and A. lugdunensis were regarded as synonyms of A. castellanii. The Chang strain could be regarded as A. hatchetti. Acanthamoeba mauritaniensis, A. divionensis, A. paradivionensis could be considered as synonyms of A. rhysodes. Neff strain was regarded as A. polyphaga rather than as A. castellanii. It is likely that riboprinting can be applied for rapid identification of Acanthamoeba isolated from the clinical specimens and environments.
Acanthamoeba/genetics
;
Acanthamoeba/classification*
;
Animal
;
DNA, Protozoan/analysis
;
Polymerase Chain Reaction/methods*
;
Polymorphism, Restriction Fragment Length*
;
RNA, Protozoan/genetics
;
RNA, Protozoan/analysis*
;
RNA, Ribosomal, 18S/genetics
;
RNA, Ribosomal, 18S/analysis*
2.Microarray Analysis of Differentially Expressed Genes between Cysts and Trophozoites of Acanthamoeba castellanii.
Eun Kyung MOON ; Ying Hua XUAN ; Dong Il CHUNG ; Yeonchul HONG ; Hyun Hee KONG
The Korean Journal of Parasitology 2011;49(4):341-347
Acanthamoeba infection is difficult to treat because of the resistance property of Acanthamoeba cyst against the host immune system, diverse antibiotics, and therapeutic agents. To identify encystation mediating factors of Acanthamoeba, we compared the transcription profile between cysts and trophozoites using microarray analysis. The DNA chip was composed of 12,544 genes based on expressed sequence tag (EST) from an Acanthamoeba ESTs database (DB) constructed in our laboratory, genetic information of Acanthamoeba from TBest DB, and all of Acanthamoeba related genes registered in the NCBI. Microarray analysis indicated that 701 genes showed higher expression than 2 folds in cysts than in trophozoites, and 859 genes were less expressed in cysts than in trophozoites. The results of real-time PCR analysis of randomly selected 9 genes of which expression was increased during cyst formation were coincided well with the microarray results. Eukaryotic orthologous groups (KOG) analysis showed an increment in T article (signal transduction mechanisms) and O article (posttranslational modification, protein turnover, and chaperones) whereas significant decrement of C article (energy production and conversion) during cyst formation. Especially, cystein proteinases showed high expression changes (282 folds) with significant increases in real-time PCR, suggesting a pivotal role of this proteinase in the cyst formation of Acanthamoeba. The present study provides important clues for the identification and characterization of encystation mediating factors of Acanthamoeba.
Acanthamoeba castellanii/*genetics/physiology
;
Animals
;
Cluster Analysis
;
Databases, Genetic
;
Expressed Sequence Tags
;
Gene Expression Profiling
;
Gene Expression Regulation, Developmental/*genetics
;
Oligonucleotide Array Sequence Analysis
;
Oocysts/*physiology
;
Protozoan Proteins/*genetics
;
RNA, Protozoan/genetics
;
Trophozoites/*physiology
3.PCR Detection and Molecular Characterization of Pentatrichomonas hominis from Feces of Dogs with Diarrhea in the Republic of Korea.
Yun Ah KIM ; Hye Youn KIM ; Shin Hyeong CHO ; Hyeong Il CHEUN ; Jae Ran YU ; Sang Eun LEE
The Korean Journal of Parasitology 2010;48(1):9-13
Pentatrichomonas hominis is considered a commensal protozoan in the large intestine of a number of mammalian hosts, such as cats, dogs, and non-human primates. The resulting infections, which can induce diarrhea, have been attributed to opportunistic overgrowth of P. hominis. This study was performed to confirm the P. hominis infection and its molecular characterization from the feces of puppies with diarrhea. Fecal samples were obtained from 14 German shepherd puppies with diarrhea over 1 week (7 females and 7 males, 2-9 months of age) residing on a dog farm in August 2007. Species-specific PCR assay identified P. hominis 18S rRNA genes in 3 of the 14 puppies (1 female and 2 males; 1 aged 2 months and 2 aged 9 months). This phylogenetic analysis established that P. hominis belonged to the 1st clade, which is comprised of Bos taurus and Felines.
Animals
;
Base Sequence
;
Cluster Analysis
;
DNA, Protozoan/chemistry/genetics
;
DNA, Ribosomal/chemistry/genetics
;
Diarrhea/parasitology/*veterinary
;
Dog Diseases/*parasitology
;
Dogs
;
Feces/*parasitology
;
Female
;
Genes, rRNA
;
Male
;
Molecular Sequence Data
;
Phylogeny
;
Polymerase Chain Reaction/methods
;
Protozoan Infections, Animal/*parasitology
;
RNA, Protozoan/genetics
;
RNA, Ribosomal, 18S/genetics
;
Republic of Korea
;
Sequence Analysis, DNA
;
Sequence Homology
;
Trichomonadida/*classification/genetics/*isolation & purification
4.Atg3-Mediated Lipidation of Atg8 Is Involved in Encystation of Acanthamoeba.
Eun Kyung MOON ; Dong Il CHUNG ; Yeonchul HONG ; Hyun Hee KONG
The Korean Journal of Parasitology 2011;49(2):103-108
Autophagy is a catabolic process involved in the degradation of a cell's own components for cell growth, development, homeostasis, and the recycling of cellular products. Autophagosome is an essential component in the protozoan parasite during differentiation and encystation. The present study identified and characterized autophagy-related protein (Atg) 3, a member of Atg8 conjugation system, in Acanthamoeba castellanii (AcAtg3). AcAtg3 encoding a 304 amino acid protein showed high similarity with the catalytic cysteine site of other E2 like enzymes of ubiquitin system. Predicted 3D structure of AcAtg3 revealed a hammer-like shape, which is the characteristic structure of E2-like enzymes. The expression level of AcAtg3 did not increase during encystation. However, the formation of mature cysts was significantly reduced in Atg3-siRNA transfected cells in which the production of Atg8-phosphatidylethanolamine conjugate was inhibited. Fluorescent microscopic analysis revealed that dispersed AcAtg3-EGFP fusion protein gathered around autophagosomal membranes during encystation. These results provide important information for understanding autophagic machinery through the lipidation reaction mediated by Atg3 in Acanthamoeba.
Acanthamoeba castellanii/*growth & development/*metabolism
;
Animals
;
Gene Knockdown Techniques
;
Lipid Metabolism
;
Models, Molecular
;
Molecular Sequence Data
;
Protein Structure, Tertiary
;
Protozoan Proteins/genetics
;
RNA, Small Interfering/metabolism
;
Rats
;
Sequence Analysis, DNA
;
Spores, Protozoan/*growth & development/*metabolism
;
Ubiquitin-Conjugating Enzymes/genetics/*metabolism
5.Presence of Cryptosporidium spp. and Giardia duodenalis in Drinking Water Samples in the North of Portugal.
Andre ALMEIDA ; Maria Joao MOREIRA ; Sonia SOARES ; Maria de Lurdes DELGADO ; Joao FIGUEIREDO ; Elisabete SILVA ; Antonio CASTRO ; Jose Manuel Correida Da COSA
The Korean Journal of Parasitology 2010;48(1):43-48
Cryptosporidium and Giardia are 2 protozoan parasites responsible for waterborne diseases outbreaks worldwide. In order to assess the prevalence of these protozoans in drinking water samples in the northern part of Portugal and the risk of human infection, we have established a long term program aiming at pinpointing the sources of surface water, drinking water, and environmental contamination, working with the water-supply industry. Total 43 sources of drinking water samples were selected, and a total of 167 samples were analyzed using the Method 1623. Sensitivity assays regarding the genetic characterization by PCR and sequencing of the genes, 18S SSU rRNA, for Cryptosporidium spp. and beta,-giardin for G. duodenalis were set in the laboratory. According to the defined criteria, molecular analysis was performed over 4 samples. Environmental stages of the protozoa were detected in 25.7% (43 out of 167) of the water samples, 8.4% (14 out of 167) with cysts of Giardia, 10.2% (17 out of 167) with oocysts of Cryptosporidium and 7.2% (12 out of 167) for both species. The mean concentrations were 0.1-12.7 oocysts of Cryptosporidium spp. per 10 L and 0.1-108.3 cysts of Giardia duodenalis per 10 L. Our results suggest that the efficiency in drinking water plants must be ameliorated in their efficiency in reducing the levels of contamination. We suggest the implementation of systematic monitoring programs for both protozoa. To authors' knowledge, this is the first report evaluating the concentration of environmental stages of Cryptosporidium and Giardia in drinking water samples in the northern part of Portugal.
Animals
;
Cryptosporidium/*isolation & purification
;
Cytoskeletal Proteins/genetics
;
DNA, Protozoan/chemistry/genetics
;
DNA, Ribosomal/chemistry/genetics
;
Genes, rRNA
;
Giardia lamblia/*isolation & purification
;
Humans
;
Molecular Sequence Data
;
Polymerase Chain Reaction
;
Portugal
;
Protozoan Proteins/genetics
;
RNA, Protozoan/genetics
;
RNA, Ribosomal, 18S/genetics
;
Risk Assessment
;
Sequence Analysis, DNA
;
Water/*parasitology
6.Acanthamoeba sohi, n. sp., a pathogenic Korean isolate YM-4 from a freshwater fish.
The Korean Journal of Parasitology 2003;41(4):181-188
A new species of Acanthamoeba was isolated from a freshwater fish in Korea and tentatively named Acanthamoeba sp. YM-4 (Korean isolate YM-4). The trophozoites were 11.0-23.0 micrometer in length and had hyaline filamentous projections. Cysts were similar to those of A. culbertsoni and A. royreba, which were previously designated as Acanthamoeba group III. Acanthamoeba YM-4 can survive at 40 degrees C, and its generation time was 19.6 hr, which was longer than that of A. culbertsoni. In terms of the in vitro cytotoxicity of lysates, Acanthamoeba YM-4 was weaker than A. culbertsoni, but stronger than A. polyphaga. On the basis of the mortality of experimentally infected mice, Acanthamoeba YM-4 was found to be highly virulent. The isoenzymes profile of Acanthamoeba YM-4 was similar to that of A. royreba. An anti-Acanthamoeba YM-4 monoclonal antibody, McAY7, was found to react only with Acanthamoeba YM-4, and not with A. culbertsoni. Random amplified polymorphic DNA marker analysis and RFLP analysis of mitochondrial DNA and of 18S small subunit ribosomal RNA, placed Acanthamoeba YM-4 in a separate cluster on the basis of phylogenetic distances. Thus the Acanthamoeba Korean isolate YM-4 was identified as a new species, and assigned as Acanthamoeba sohi.
Acanthamoeba/*classification/genetics/isolation & purification/*pathogenicity
;
Amebiasis/parasitology/*veterinary
;
Animals
;
DNA, Mitochondrial/analysis
;
DNA, Protozoan/analysis
;
Fish Diseases/*parasitology
;
Gills/parasitology
;
Goldfish/*parasitology
;
Korea
;
Mice
;
Phylogeny
;
Polymorphism, Restriction Fragment Length
;
RNA, Ribosomal, 18S/genetics
;
Random Amplified Polymorphic DNA Technique
;
Virulence
7.Occurrence and Molecular Identification of Giardia duodenalis from Stray Cats in Guangzhou, Southern China.
Guochao ZHENG ; Wei HU ; Yuanjia LIU ; Qin LUO ; Liping TAN ; Guoqing LI
The Korean Journal of Parasitology 2015;53(1):119-124
The objective of this study was to genetically characterize isolates of Giardia duodenalis and to determine if zoonotic potential of G. duodenalis could be found in stray cats from urban and suburban environments in Guangzhou, China. Among 102 fresh fecal samples of stray cats, 30 samples were collected in Baiyun district (urban) and 72 in Conghua district (suburban). G. duodenalis specimens were examined using light microscopy, then the positive specimens were subjected to PCR amplification and subsequent sequencing at 4 loci such as glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), beta-giardin (bg), and small subunit ribosomal RNA (18S rRNA) genes. The phylogenetic trees were constructed using obtained sequences by MEGA5.2 software. Results show that 9.8% (10/102) feline fecal samples were found to be positive by microscopy, 10% (3/30) in Baiyun district and 9.7% (7/72) in Conghua district. Among the 10 positive samples, 9 were single infection (8 isolates, assemblage A; 1 isolate, assemblage F) and 1 sample was mixed infection with assemblages A and C. Based on tpi, gdh, and bg genes, all sequences of assemblage A showed complete homology with AI except for 1 isolate (CHC83). These findings not only confirmed the occurrence of G. duodenalis in stray cats, but also showed that zoonotic assemblage A was found for the first time in stray cats living in urban and suburban environments in China.
Animals
;
Cat Diseases/*parasitology
;
Cats
;
China
;
Cluster Analysis
;
DNA, Protozoan/chemistry/genetics
;
DNA, Ribosomal/chemistry/genetics
;
Feces/parasitology
;
Giardia lamblia/*classification/cytology/genetics/*isolation & purification
;
Giardiasis/parasitology/*veterinary
;
Microscopy
;
Molecular Sequence Data
;
Phylogeny
;
Protozoan Proteins/genetics
;
RNA, Ribosomal, 18S/genetics
;
Sequence Analysis, DNA
8.Occurrence and Molecular Identification of Giardia duodenalis from Stray Cats in Guangzhou, Southern China.
Guochao ZHENG ; Wei HU ; Yuanjia LIU ; Qin LUO ; Liping TAN ; Guoqing LI
The Korean Journal of Parasitology 2015;53(1):119-124
The objective of this study was to genetically characterize isolates of Giardia duodenalis and to determine if zoonotic potential of G. duodenalis could be found in stray cats from urban and suburban environments in Guangzhou, China. Among 102 fresh fecal samples of stray cats, 30 samples were collected in Baiyun district (urban) and 72 in Conghua district (suburban). G. duodenalis specimens were examined using light microscopy, then the positive specimens were subjected to PCR amplification and subsequent sequencing at 4 loci such as glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), beta-giardin (bg), and small subunit ribosomal RNA (18S rRNA) genes. The phylogenetic trees were constructed using obtained sequences by MEGA5.2 software. Results show that 9.8% (10/102) feline fecal samples were found to be positive by microscopy, 10% (3/30) in Baiyun district and 9.7% (7/72) in Conghua district. Among the 10 positive samples, 9 were single infection (8 isolates, assemblage A; 1 isolate, assemblage F) and 1 sample was mixed infection with assemblages A and C. Based on tpi, gdh, and bg genes, all sequences of assemblage A showed complete homology with AI except for 1 isolate (CHC83). These findings not only confirmed the occurrence of G. duodenalis in stray cats, but also showed that zoonotic assemblage A was found for the first time in stray cats living in urban and suburban environments in China.
Animals
;
Cat Diseases/*parasitology
;
Cats
;
China
;
Cluster Analysis
;
DNA, Protozoan/chemistry/genetics
;
DNA, Ribosomal/chemistry/genetics
;
Feces/parasitology
;
Giardia lamblia/*classification/cytology/genetics/*isolation & purification
;
Giardiasis/parasitology/*veterinary
;
Microscopy
;
Molecular Sequence Data
;
Phylogeny
;
Protozoan Proteins/genetics
;
RNA, Ribosomal, 18S/genetics
;
Sequence Analysis, DNA
9.A Case of Plasmodium ovale Malaria Imported from West Africa.
The Korean Journal of Parasitology 2013;51(2):213-218
Malaria is a parasitic infection caused by Plasmodium species. Most of the imported malaria in Korea are due to Plasmodium vivax and Plasmodium falciparum, and Plasmodium ovale infections are very rare. Here, we report a case of a 24-year-old American woman who acquired P. ovale while staying in Ghana, West Africa for 5 months in 2010. The patient was diagnosed with P. ovale malaria based on a Wright-Giemsa stained peripheral blood smear, Plasmodium genus-specific real-time PCR, Plasmodium species-specific nested PCR, and sequencing targeting 18S rRNA gene. The strain identified had a very long incubation period of 19-24 months. Blood donors who have malaria with a very long incubation period could be a potential danger for propagating malaria. Therefore, we should identify imported P. ovale infections not only by morphological findings but also by molecular methods for preventing propagation and appropriate treatment.
Blood/parasitology
;
DNA, Protozoan/chemistry/genetics
;
Female
;
Ghana
;
Humans
;
Korea
;
Malaria/*diagnosis/parasitology/*pathology
;
Microscopy
;
Plasmodium ovale/*isolation & purification
;
Polymerase Chain Reaction
;
RNA, Ribosomal, 18S/genetics
;
Sequence Analysis, DNA
;
*Travel
;
Young Adult
10.Molecular characterization of Acanthamoeba isolated from amebic keratitis related to orthokeratology lens overnight wear.
Sun Joo LEE ; Hae Jin JEONG ; Ji Eun LEE ; Jong Soo LEE ; Ying Hua XUAN ; Hyun Hee KONG ; Dong Il CHUNG ; Mee Sun OCK ; Hak Sun YU
The Korean Journal of Parasitology 2006;44(4):313-320
In an effort to characterize, on the molecular scale, the Acanthamoeba initially isolated from the cornea of an amoebic keratitis patient associated with overnight-wear orthokeratology lens in Korea, we conducted mitochondrial DNA restriction fragment length polymorphism, 18S rDNA sequencing, and drug sensitivity analyses on the isolate (KA/PE1). The patient was treated with polyhexamethylene biguanide, chlorhexidine and oral itraconazole, which resulted in resolution of the patient's ocular inflammation. The majority of the molecular characteristics of the KA/PE1 were determined to be identical, or quite similar, to those of A. castellanii Ma strain, which had been isolated also from amoebic keratitis. The risk of Acanthamoeba keratitis as a potential complication of overnight orthokeratology is briefly discussed.
*Sequence Analysis, DNA
;
RNA, Ribosomal, 18S/genetics
;
Polymorphism, Restriction Fragment Length
;
Parasitic Sensitivity Tests
;
Myopia/therapy
;
Itraconazole/administration & dosage
;
Humans
;
Female
;
Disinfectants/administration & dosage
;
DNA, Ribosomal/analysis
;
DNA, Protozoan/analysis
;
DNA, Mitochondrial/analysis
;
Contact Lenses/*adverse effects
;
Chlorhexidine/administration & dosage
;
Biguanides/administration & dosage
;
Astigmatism/therapy
;
Antiprotozoal Agents/administration & dosage
;
Animals
;
Adolescent
;
Acanthamoeba Keratitis/drug therapy/*parasitology
;
Acanthamoeba/classification/*genetics/*isolation & purification