1.Mitochondrial genome sequence characteristics and phylogenetic analysis of Schizothorax argentatus.
Yuping LIU ; Jianyong HU ; Zijun NING ; Peiyi XIAO ; Tianyan YANG
Chinese Journal of Biotechnology 2023;39(7):2965-2985
Schizothorax argentatus that only distributes in the Ili River basin in Xinjiang is one of the rare and endangered species of schizothorax in China, thus has high scientific and economic values. In this study, the complete mitochondrial genome sequence of S. argenteus with a length of 16 580 bp was obtained by high-throughput sequencing. The gene compositions and arrangement were similar to those of typical vertebrates. It contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding region (D-loop). The nucleotide compositions were A (30.25%), G (17.28%), C (27.20%), and T (25.27%), respectively, showing obvious AT bias and anti-G bias. Among the tRNA genes, only tRNA-Ser(GCU) could not form a typical cloverleaf structure due to the lack of dihydrouracil arm. The AT-skew and GC-skew values of the ND6 gene were fluctuating the most, suggesting that the gene may experience different selection and mutation pressures from other genes. The mitochondrial control region of S. argenteus contained three different domains, i.e., termination sequence region (ETAS), central conserved region (CSB-F, CSB-E, CSB-D, and CSB-B), and conserved sequence region (CSB1, CSB2, and CSB3). The conserved sequence fragment TT (AT) nGTG, which was ubiquitous in Cypriniformes, was identified at about 50 bp downstream CSB3. Phylogenetic relationships based on the complete mitochondrial genome sequence of 28 Schizothorax species showed that S. argenteus had differentiated earlier and had a distant relationship with other species, which may be closely related to the geographical location and the hydrological environment where it lives.
Animals
;
Genome, Mitochondrial/genetics*
;
Phylogeny
;
Sequence Analysis, DNA
;
Cyprinidae/genetics*
;
RNA, Transfer/genetics*
;
DNA, Mitochondrial/genetics*
;
Genes, Mitochondrial
2.Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens
Hyeong Kyu JEON ; Hansol PARK ; Dongmin LEE ; Seongjun CHOE ; Yeseul KANG ; Mohammed Mebarek BIA ; Sang Hwa LEE ; Keeseon S EOM
The Korean Journal of Parasitology 2019;57(1):55-60
This study was undertaken to determine the complete mitochondrial DNA sequence and structure of the mitochondrial genome of Spirometra ranarum, and to compare it with those of S. erinaceieuropaei and S. decipiens. The aim of this study was to provide information of the species level taxonomy of Spirometra spp. using the mitochondrial genomes of 3 Spirometra tapeworms. The S. ranarum isolate originated from Myanmar. The mitochondrial genome sequence of S. ranarum was compared with that of S. erinaceieuropaei (GenBank no. KJ599680) and S. decipiens (Gen-Bank no. KJ599679). The complete mtDNA sequence of S. ranarum comprised 13,644 bp. The S. ranarum mt genome contained 36 genes comprising 12 protein-coding genes, 22 tRNAs and 2 rRNAs. The mt genome lacked the atp8 gene, as found for other cestodes. All genes in the S. ranarum mitochondrial genome are transcribed in the same direction and arranged in the same relative position with respect to gene loci as found for S. erinaceieuropaei and S. decipiens mt genomes. The overall nucleotide sequence divergence of 12 protein-coding genes between S. ranarum and S. decipiens differed by 1.5%, and 100% sequence similarity was found in the cox2 and nad6 genes, while the DNA sequence divergence of the cox1, nad1, and nad4 genes of S. ranarum and S. decipiens was 2.2%, 2.1%, and 2.6%, respectively.
Base Sequence
;
Cestoda
;
Classification
;
DNA, Mitochondrial
;
Genes, vif
;
Genome
;
Genome, Mitochondrial
;
Myanmar
;
RNA, Transfer
;
Spirometra
3.Nucleotide modification of mitochondrial tRNA and mitochondrial diseases.
Feng JIANG ; Minxin GUAN ; Ling XUE
Chinese Journal of Medical Genetics 2017;34(2):275-279
A high proportion of modified nucleotides has been found in mitochondrial tRNA. Such modification can promote accurate folding of tRNA and its stability, while unmodified mitochondrial tRNA may fold into various 2D-structures with impaired functions. Therefore, modification of mitochondrial tRNA is closely related to mitochondrial diseases. Particularly, positions 9, 34, 37, 54 and 55 of the mitochondrial tRNA are critical for such modification. Mutations at these positions are important cause for mitochondrial dysfunction and have been associated with various mitochondrial diseases.
DNA, Mitochondrial
;
chemistry
;
genetics
;
Humans
;
Mitochondrial Diseases
;
genetics
;
Mutation
;
Nucleic Acid Conformation
;
RNA, Transfer
;
chemistry
;
genetics
4.Progress of research on the genetic diseases caused by variants of mitochondrial aminoacyl-tRNA synthase gene.
Xiangyue ZHAO ; Tingting YU ; Jian WANG
Chinese Journal of Medical Genetics 2022;39(12):1424-1428
As conserved enzymes with important functions, aminoacyl-tRNA synthetase are expressed ubiquitously in cells. These include cytoplasmic aminoacyl-tRNA synthetase, mitochondrial aminoacyl-tRNA synthetase and bifunctional aminoacyl-tRNA synthetase. Mitochondrial aminoacyl-tRNA synthetases catalyze the binding of amino acids with its corresponding tRNA in the mitochondria and participate in the translation of 13 subunits of oxidative phosphorylation enzyme complexes encoded by the mitochondrial genome. Mutations in genes encoding mitochondrial aminoacyl-tRNA synthase may cause a variety of genetic disorders. This review has summarized the clinical characteristics, molecular pathogenesis and treatment of genetic diseases caused by mutations of such genes.
Humans
;
RNA, Transfer, Amino Acyl
;
Genes, Mitochondrial
;
Amino Acyl-tRNA Synthetases/genetics*
;
Genome, Mitochondrial
;
Mitochondria/genetics*
5.Complete Mitochondrial Genome of Anoplocephala magna Solidifying the Species.
The Korean Journal of Parasitology 2016;54(3):369-373
The 2 species of the genus Anoplocephala (Anoplocephalidae), A. perfoliata and A. magna, are among the most important equine cestode parasites. However, there is little information about their differences at the molecular level. The present study revealed that the mitochondrial (mt) genome of A. magna was 13,759 bp in size and 700 bp shorter than that of A. perfoliata. The 2 species includes 2 rRNA, 22 tRNA, and 12 protein-coding genes each. The size of each of the 36 genes was the same as that of A. perfoliata, except for cox1, rrnL, trnC, trnS2(UCN), trnG, trnH, trnQ, and trnP. In the full mitochondrial genome, the sequence similarity was 87.1%. The divergence in the nucleotide and amino acid sequences of individual protein-coding genes ranged from 11.1% to 16% and 6.8% to 16.4%, respectively. The 2 noncoding regions of the mt genome of A. magna were 199 bp and 271 bp in length, while the equivalent regions in A. perfoliata were 875 bp and 276 bp, respectively. The results of this study support the proposal that A. magna and A. perfoliata are separate species, consistent with previous morphological analyses.
Amino Acid Sequence
;
Cestoda
;
Genome
;
Genome, Mitochondrial*
;
Parasites
;
RNA, Transfer
6.Current Challenges in Bacterial Transcriptomics.
Suhyung CHO ; Yoobok CHO ; Sooin LEE ; Jayoung KIM ; Hyeji YUM ; Sun Chang KIM ; Byung Kwan CHO
Genomics & Informatics 2013;11(2):76-82
Over the past decade or so, dramatic developments in our ability to experimentally determine the content and function of genomes have taken place. In particular, next-generation sequencing technologies are now inspiring a new understanding of bacterial transcriptomes on a global scale. In bacterial cells, whole-transcriptome studies have not received attention, owing to the general view that bacterial genomes are simple. However, several recent RNA sequencing results are revealing unexpected levels of complexity in bacterial transcriptomes, indicating that the transcribed regions of genomes are much larger and complex than previously anticipated. In particular, these data show a wide array of small RNAs, antisense RNAs, and alternative transcripts. Here, we review how current transcriptomics are now revolutionizing our understanding of the complexity and regulation of bacterial transcriptomes.
Genome
;
Genome, Bacterial
;
Hypogonadism
;
Mitochondrial Diseases
;
Ophthalmoplegia
;
RNA
;
RNA, Antisense
;
RNA, Satellite
;
Sequence Analysis, RNA
;
Transcription Initiation Site
;
Transcriptome
7.Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2.
Peipei LIU ; Jinliang HUANG ; Qian ZHENG ; Leiming XIE ; Xinping LU ; Jie JIN ; Geng WANG
Protein & Cell 2017;8(10):735-749
Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMS-localized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.
Cell Line
;
Humans
;
Mitochondrial Membranes
;
metabolism
;
Protein Transport
;
RNA
;
biosynthesis
;
chemistry
;
metabolism
;
RNA Stability
;
RNA, Mitochondrial
;
Ribonucleases
;
metabolism
;
Tumor Suppressor Proteins
;
metabolism
8.Genetics of Mitochondrial Myopathies.
Journal of Genetic Medicine 2013;10(1):20-26
Mitochondrion is an intracellular organelle with its own genome. Its function in cellular metabolism is indispensable that mitochondrial dysfunction gives rise to multisystemic failure. The manifestation is most prominent with tissues of high energy demand such as muscle and nerve. Mitochondrial myopathies occur not only by mutations in mitochondrial genome, but also by defects in nuclear genes or secondarily by toxic insult on mitochondrial replication. Currently curative treatment modality does not exist and symptomatic treatment remains mainstay. Administration of L-arginine holds great promise according to the recent reports. Advances in mitochondrial RNA import might enable a new therapeutic strategy.
Arginine
;
Genome
;
Genome, Mitochondrial
;
MELAS Syndrome
;
MERRF Syndrome
;
Mitochondria
;
Mitochondrial Myopathies
;
Muscles
;
Ophthalmoplegia, Chronic Progressive External
;
Organelles
;
RNA
9.The quantitative analysis the number of mitochondrial DNA copy using real-time PCR and mitochondrial tRNA mutation analysis at position 3243 in Korean gestational diabetes mellitus.
Sung Woon CHANG ; Sook Hwan LEE ; Hye Sun JUN ; Kyu Bum KWACK ; Sung Won CHO ; Hye Jin JEONG ; So Yeon AHN ; You Lee KIM ; Soo Hee KIM ; Lee Suk PARK ; Jung Hyun CHO ; Tae Ki YOON
Korean Journal of Obstetrics and Gynecology 2005;48(4):978-986
OBJECTIVE: Mitochondrial gene mutations may play a role in the development of gestational diabetes mellitus. This study has assisted to confirm the relationship between the mitochondrial DNA copy number and the GDM. METHODS: Peripheral blood samples were collected from 68 patients with GDM and from 79 controls. For the quantification of mtDNA content, a comparative analysis was performed by the amplification of endogenous control (nuclear DNA, 28S rRNA). The mitochondrial A3243G mutation analysis performed. RESULTS: The ratio of mtDNA/28S rRNA was 1.2053 +/- 0.8307 in GDM patients and 1.7975 +/- 1.1355 in control group (p=0.0004), respectively. Among 68 GDM patients, the mutation in tRNA nt 3243 was detected in only one subject. The A3243G mutation in tRNA- Leu gene, implicated in GDM was reported in 1 of 68 (1.47%) but not in controls. CONCLUSION: In this investigation, blood samples from GDM patients using the real-time polymerase chain reaction will be applied to confirm the relationship between the mitochondrial DNA copy number and the GDM. It is hypothesized that this method will help to predict GDM, and aid in developing early diagnostic methods and treatment modalities.
Diabetes, Gestational*
;
DNA
;
DNA, Mitochondrial*
;
Female
;
Genes, Mitochondrial
;
Humans
;
Pregnancy
;
Real-Time Polymerase Chain Reaction*
;
RNA, Transfer*
10.Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos.
Protein & Cell 2015;6(7):472-475
Nuclease-based gene editing technologies have opened up opportunities for correcting human genetic diseases. For the first time, scientists achieved targeted gene editing of mitochondrial DNA in mouse oocytes fused with patient cells. This fascinating progression may encourage the development of novel therapy for human maternally inherent mitochondrial diseases.
Animals
;
DNA, Mitochondrial
;
genetics
;
Embryo, Mammalian
;
metabolism
;
Genome
;
Germ Cells
;
metabolism
;
Humans
;
Mitochondrial Diseases
;
genetics
;
therapy
;
RNA Editing
;
genetics