1.Role of Long Non-coding Ribonucleic Acid in Gastrointestinal Cancer.
The Korean Journal of Gastroenterology 2013;62(6):317-326
With the improvement of high-throughput genomic technology such as microarray and next-generation sequencing over the last ten to twenty year, we have come to know that the portion of the genome responsible for protein coding constitutes just approximately 1.5%. The remaining 98.5% of the genome not responsible for protein coding have been regarded as 'junk DNA'. More recently, however, 'Encyclopedia of DNA elements project' revealed that most of the junk DNA were transcribed to RNA regardless of being translated into proteins. In addition, many reports support that a lot of these non-coding RNAs play a role in gene regulation. In fact, there are various functioning short non-coding RNAs including rRNA, tRNA, small interfering RNA, and micro RNA. Mechanisms of these RNAs are relatively well-known. Until recently, however, little is known about long non-coding RNAs which consist of 200 nucleotides or more. In this article, we will review the representative long non-coding RNAs which have been reported to be related to gastrointestinal cancers and to play a certain role in its pathogenesis.
Gastrointestinal Neoplasms/*genetics/*metabolism/pathology
;
Humans
;
Liver Neoplasms/genetics/metabolism/pathology
;
RNA, Long Noncoding/genetics/*metabolism
2.Role of Long Non-coding Ribonucleic Acid in Gastrointestinal Cancer.
The Korean Journal of Gastroenterology 2013;62(6):317-326
With the improvement of high-throughput genomic technology such as microarray and next-generation sequencing over the last ten to twenty year, we have come to know that the portion of the genome responsible for protein coding constitutes just approximately 1.5%. The remaining 98.5% of the genome not responsible for protein coding have been regarded as 'junk DNA'. More recently, however, 'Encyclopedia of DNA elements project' revealed that most of the junk DNA were transcribed to RNA regardless of being translated into proteins. In addition, many reports support that a lot of these non-coding RNAs play a role in gene regulation. In fact, there are various functioning short non-coding RNAs including rRNA, tRNA, small interfering RNA, and micro RNA. Mechanisms of these RNAs are relatively well-known. Until recently, however, little is known about long non-coding RNAs which consist of 200 nucleotides or more. In this article, we will review the representative long non-coding RNAs which have been reported to be related to gastrointestinal cancers and to play a certain role in its pathogenesis.
Gastrointestinal Neoplasms/*genetics/*metabolism/pathology
;
Humans
;
Liver Neoplasms/genetics/metabolism/pathology
;
RNA, Long Noncoding/genetics/*metabolism
3.lncRNA in hepatic glucose and lipid metabolism: a review.
Xiaoxiao CHEN ; Chen SUN ; Chang LIU ; Jie WU
Chinese Journal of Biotechnology 2021;37(1):40-52
In recent years, long non-coding RNA (lncRNA) has been proved to be involved in the regulation of biological processes at various levels, attracting research interests in life science. LncRNA possesses the unique capability and exert discrete effects on transcription, translation and post-translational modification of the target genes through interacting with DNA, RNA and protein. Current studies have revealed that lncRNA plays an important role in hepatic metabolism via diverse pathways. This review focuses on the function of lncRNA and its relationship with hepatic energy metabolism and the correlated diseases, to elucidate the underlying mechanisms and prospects of lncRNA researches.
Glucose/metabolism*
;
Lipid Metabolism/genetics*
;
Liver/metabolism*
;
RNA, Long Noncoding/genetics*
4.Advances in research on gastrointestinal cancer-associated long non-coding RNAs.
Jiaxin GE ; Qianqian PANG ; Junming GUO
Chinese Journal of Medical Genetics 2015;32(2):284-287
Long non-coding RNAs (lncRNAs) are a class of non-coding transcripts which are greater than 200 nucleotides in length and have a variety of biological functions. Studies have found that lncRNAs play an important role in the development of gastrointestinal cancers and can affect tumor cell growth, angiogenesis, metastasis and drug resistance. This paper has reviewed lncRNAs associated with gastrointestinal cancers and explored their roles in the occurrence, diagnosis and treatment of gastrointestinal cancers.
Animals
;
Gastrointestinal Neoplasms
;
genetics
;
metabolism
;
Gene Expression Regulation, Neoplastic
;
Humans
;
RNA, Long Noncoding
;
genetics
;
metabolism
5.Research advance of ANRIL on atherosclerosis by regulating cell proliferation and apoptosis.
Juan FANG ; Zhicheng PAN ; Xiaogang GUO
Journal of Zhejiang University. Medical sciences 2020;49(1):113-117
Atherosclerosis is an important pathological basis for coronary artery disease. ANRIL is an antisense non-coding RNA located in Chr9p21 locus, which was identified as the most significant risk locus associated with atherosclerosis. ANRIL can produce multiple transcripts including linear and circular transcripts after various transcript splicing. It has been illustrated that ANRIL plays important roles in the pathology of atherosclerosis by regulating the proliferation and apoptosis of vascular cells. Linear ANRIL can regulate the proliferation of vascular smooth muscle cells (VSMCs) in plaques by chromatin modification, as well as influence the proliferation and the apoptosis of macrophages in post transcription; circular ANRIL can affect the proliferation and apoptosis of VSMCs by chromatin modification as well as interfering with rRNA maturation. In this review, we describe the ANRIL evolution, different transcripts characteristics, and their roles in the proliferation and apoptosis of vascular cells to participate in the process of atherosclerosis, for further understanding the pathogenesis of atherosclerosis and finding potential targets for diagnosis and treatment of atherosclerosis.
Apoptosis
;
genetics
;
Atherosclerosis
;
genetics
;
Cell Proliferation
;
genetics
;
Humans
;
Myocytes, Smooth Muscle
;
pathology
;
RNA, Long Noncoding
;
metabolism
6.Clinical Significance of Low Expression of LncRNA CASC15 in Acute Myeloid Leukemia with NPM1 Mutations.
Pei-Hui XIA ; Zi-Jun XU ; Ye JIN ; Ji-Chun MA ; Xiang-Mei WEN ; Qian YUAN ; Jia-Yan LENG ; Jun QIAN ; Jiang LIN
Journal of Experimental Hematology 2022;30(3):659-670
:
AbstractObjective: To identify the expression and methylation patterns of lncRNA CASC15 in bone marrow (BM) samples of acute myeloid leukemia (AML) patients, and further explore its clinical significance.
METHODS:
Eighty-two de novo AML patients and 18 healthy donors were included in the study. Meanwhile, seven public datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) were included to confirm the expression and methylation data of CASC15. Receiver operating characteristic (ROC) curve analysis was applied to determine the discriminative capacity of CASC15 expression to identify AML. The patients were divided into CASC15high group and CASC15low group by X-tile method, and the prognostic value of CASC15 was identified by Kaplan-Meier method and univariate and multivariate Cox regression analysis.
RESULTS:
The expression level of CASC15 was significantly decreased in BM cells of AML patients compared with healthy donors (P<0.001). ROC curve analysis suggested that CASC15 expression might be a potential biomarker to discriminate AML from controls. The expression of CASC15 was high at the early stage of hematopoiesis, and reached a peak at the stage of multipotent progenitors differentiation, then decreased rapidly, and was at a range of low level fluctuations in the subsequent process. Among FAB subtypes, CASC15 expression in M0 was significantly higher than that in M1-M7. Clinically, CASC15low patients were more likely to have NPM1 mutations than CASC15high patients (P=0.048), while CASC15high patients had a significantly higher frequency of IDH1 and RUNX1 mutations (P=0.021 and 0.014, respectively). Moreover, CASC15low group had a shorter overall survival (OS) in patients with NPM1 mutations. Furthermore, multivariate analysis confirmed that CASC15 expression was a significant independent risk factor for OS in NPM1 mutated AML patients. In addition, CASC15 methylation level in BM samples of AML patients was significantly decreased compared with healthy donors. Patients with CASC15 high methylation had poor OS and disease-free survival.
CONCLUSION
The expression of CASC15 is decreased in AML, and low CASC15 expression may predict adverse prognosis in AML patients with NPM1 mutations. Moreover, CASC15 methylation level in AML is significantly decreased, and high CASC15 methylation may predict poor prognosis in AML.
Humans
;
Leukemia, Myeloid, Acute/metabolism*
;
Mutation
;
Nuclear Proteins/genetics*
;
Nucleophosmin/genetics*
;
Prognosis
;
RNA, Long Noncoding/genetics*
7.Role and mechanism of non-coding RNA in the pathogenesis of acute kidney injury.
Peng WANG ; Miao-Miao ZHOU ; Jing NIE
Acta Physiologica Sinica 2022;74(1):39-46
Acute kidney injury (AKI) is a common clinical syndrome and an independent risk factor of chronic kidney disease and end-stage renal failure. At present, the treatments of AKI are still very limited and the morbidity and mortality of AKI are rising. Non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs (circRNAs), are RNAs that are transcribed from the genome, but not translated into proteins. It has been widely reported that ncRNA is involved in AKI caused by ischemia reperfusion injury (IRI), drugs and sepsis through different molecular biological mechanisms, such as apoptosis and oxidative stress response. Therefore, ncRNAs are expected to become a new target for clinical prevention and treatment of AKI and a new biomarker for early warning of the occurrence and prognosis of AKI. Here, the role and mechanism of ncRNA in AKI and the research progress of ncRNA as biomarkers are reviewed.
Acute Kidney Injury/metabolism*
;
Humans
;
MicroRNAs/metabolism*
;
RNA, Circular
;
RNA, Long Noncoding/genetics*
;
RNA, Untranslated/genetics*
;
Reperfusion Injury/genetics*
8.Noncoding RNAs in cancer and cancer stem cells.
Tianzhi HUANG ; Angel ALVAREZ ; Bo HU ; Shi-Yuan CHENG
Chinese Journal of Cancer 2013;32(11):582-593
In recent years, it has become increasingly apparent that noncoding RNAs (ncRNA) are of crucial importance for human cancer. The functional relevance of ncRNAs is particularly evident for microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). miRNAs are endogenously expressed small RNA sequences that act as post-transcriptional regulators of gene expression and have been extensively studied for their roles in cancers, whereas lncRNAs are emerging as important players in the cancer paradigm in recent years. These noncoding genes are often aberrantly expressed in a variety of human cancers. However, the biological functions of most ncRNAs remain largely unknown. Recently, evidence has begun to accumulate describing how ncRNAs are dysregulated in cancer and cancer stem cells, a subset of cancer cells harboring self-renewal and differentiation capacities. These studies provide insight into the functional roles that ncRNAs play in tumor initiation, progression, and resistance to therapies, and they suggest ncRNAs as attractive therapeutic targets and potentially useful diagnostic tools.
Gene Expression Regulation, Neoplastic
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Neoplasms
;
genetics
;
metabolism
;
pathology
;
therapy
;
Neoplastic Stem Cells
;
metabolism
;
RNA, Long Noncoding
;
genetics
;
metabolism
;
RNA, Untranslated
;
genetics
;
metabolism
9.Nuclear microRNAs and their unconventional role in regulating non-coding RNAs.
Hongwei LIANG ; Junfeng ZHANG ; Ke ZEN ; Chen-Yu ZHANG ; Xi CHEN
Protein & Cell 2013;4(5):325-330
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that are involved in post-transcriptional gene regulation. It has long been assumed that miRNAs exert their roles only in the cytoplasm, where they recognize their target protein-coding messenger RNAs (mRNAs), and result in translational repression or target mRNA degradation. Recent studies, however, have revealed that mature miRNAs can also be transported from the cytoplasm to the nucleus and that these nuclear miRNAs can function in an unconventional manner to regulate the biogenesis and functions of ncRNAs (including miRNAs and long ncRNAs), adding a new layer of complexity to our understanding of gene regulation. In this review, we summarize recent literature on the working model of these unconventional miRNAs and speculate on their biological significance. We have every reason to believe that these novel models of miRNA function will become a major research topic in gene regulation in eukaryotes.
Cell Nucleus
;
genetics
;
Cytoplasm
;
genetics
;
Eukaryota
;
genetics
;
Gene Expression Regulation
;
Humans
;
MicroRNAs
;
genetics
;
RNA Stability
;
genetics
;
RNA, Long Noncoding
;
genetics
;
RNA, Messenger
;
genetics
;
metabolism
10.Prognostic value and mechanism of long non-coding RNA DLEU1 in osteosarcoma.
Jing-Jing ZHANG ; Ping YANG ; Xiao-Qiang SHANG
China Journal of Orthopaedics and Traumatology 2023;36(6):559-564
OBJECTIVE:
To investigate the prognostic value and mechanism of long non-coding RNA DLEU1(LncRNA DLEU1) in osteosarcoma.
METHODS:
The tissue samples and clinical data of 86 patients with osteosarcoma treated by orthopaedic surgery in our hospital from January 2012 to December 2014 were retrospectively collected. The expression of LncRNA DLEU1 in pathological tissues was detected by qRT-PCR, then the patients were divided into high and low expression of LncRNA DLEU1 groups. Osteosarcoma cell line HOS was divided into two groups, down-regulated expression group (si-DLEU1 group) and negative control group (si-NC group). LncRNA DLEU1 siRNA and negative control sequence were transfected by Lipofectamine 3000. Chi-square test was used to analyze the relationship between the expression of LncRNA DLEU1 and the clinicopathological factors of osteosarcoma. Kaplan-Meier method was used to compare the difference of the overall survival rate of osteosarcoma patients between the high and low expression groups of LncRNA DLEU1. The risk factors affecting the overall survival rate of osteosarcoma were analyzed by single factor and multifactor analysis. The number of invasive cells in the two groups was determined and compared by Transwell assay.
RESULTS:
The expression of LncRNA DLEU1 in osteosarcoma tissue was higher than that in adjacent tissues (P<0.001). The expression of LncRNA DLEU1 in human osteosarcoma cell lines (MG-63, U-2 OS, and HOS) was significantly higher than that in human osteoblast line hFOB 1.19 (P<0.001). The expression of LncRNA DLEU1 was significantly correlated with Enneking stage (P<0.001), distant metastasis (P=0.016), and histological grade (P=0.028). The 1-year overall survival rate of the LncRNA DLEU1 high expression group was significantly higher than that of the low expression group (90.7% vs 60.5%, P<0.001). The 5-year overall survival rate of the LncRNA DLEU1 high expression group was significantly higher than that of the low expression group (32.6% vs 11.6%, P<0.001). Univariate analysis showed that Enneking stage (P<0.001), tumor size (P=0.043), distant metastasis (P<0.001), histological grade (P<0.001), and expression of LncRNA DLEU1 (P<0.001) were risk factors for overall survival of osteosarcoma patients. Multivariate analysis showed that high expression of LncRNA DLEU1 [HR=1.948, 95% CI(1.141, 3.641), P=0.012] and distant metastasis[HR=4.108, 95% CI(2.169, 7.780), P<0.001] were independent risk factors for overall survival of osteosarcoma patients. The number of invasive cells in si-DLEU1 group was significantly lesser than that in si-NC group(139±13 vs 357±31, P<0.001).
CONCLUSION
High expression of LncRNA DLEU1 is a molecular marker affecting the prognosis of osteosarcoma patients. Downregulation of LncRNA DLEU1 can inhibit the invasion of osteosarcoma cells.
Humans
;
Prognosis
;
RNA, Long Noncoding/metabolism*
;
Retrospective Studies
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Osteosarcoma/genetics*
;
Bone Neoplasms/pathology*