2.Research Progress of circRNA and Its Significance in Forensic Science.
Ya-qi ZHANG ; Cheng-chen SHAO ; Cheng-tao LI ; Zi-qin ZHAO ; Jian-hui XIE
Journal of Forensic Medicine 2016;32(2):131-133
RNA has received more attention in the field of forensic medicine and the development of the new biological markers based on RNA shows great significance in the analysis of complex cases. circular RNA (circRNA) is a kind of non-coding RNA which is widely reported recently. Although the regulatory mechanisms of generation and expression are not fully clear, the existing research indicates that circRNA has important biological functions. CircRNA has a cell-type-specific expression with great stability and a high expression level, which makes it meaningful in forensic applications potentially. In this paper, the research progress, the generation and regulation of circRNA as well as its biological characteristics and functions are summarized, which will provide references for related studies and forensic applications.
Forensic Sciences
;
Humans
;
RNA
;
RNA, Circular
3.Circular RNAs: typical biomarkers for bone-related diseases.
Linghui HU ; Wei WU ; Jun ZOU
Journal of Zhejiang University. Science. B 2022;23(12):975-988
Bone is a connective tissue that has important functions in the human body. Cells and the extracellular matrix (ECM) are key components of bone and are closely related to bone-related diseases. However, the outcomes of conventional treatments for bone-related diseases are not promising, and hence it is necessary to elucidate the exact regulatory mechanisms of bone-related diseases and identify novel biomarkers for diagnosis and therapy. Circular RNAs (circRNAs) are single-stranded RNAs that form closed circular structures without a 5' cap or 3' tail and polycyclic adenylate tails. Due to their high stability, circRNAs have the potential to be typical biomarkers. Accumulating evidence suggests that circRNAs are involved in bone-related diseases, including osteoarthritis, osteoporosis, osteosarcoma, multiple myeloma, intervertebral disc degeneration, and rheumatoid arthritis. Herein, we summarize the recent research progress on the characteristics and functions of circRNAs, and highlight the regulatory mechanism of circRNAs in bone-related diseases.
Humans
;
RNA, Circular
;
RNA
;
Biomarkers
;
Osteoarthritis
4.Circular RNAs in the pathogenesis of sepsis and their clinical implications: A narrative review.
Lin WEI ; Yongpeng YANG ; Weikai WANG ; Ruifeng XU
Annals of the Academy of Medicine, Singapore 2022;51(4):221-227
INTRODUCTION:
Sepsis is defined as a life-threatening complication that occurs when the body responds to an infection attacking the host. Sepsis rapidly progresses and patients deteriorate and develop septic shock, with multiple organ failure, if not promptly treated. Currently no effective therapy is available for sepsis; therefore, early diagnosis is crucial to decrease the high mortality rate. Genome-wide expression analyses of patients in critical conditions have confirmed that the expression levels of the majority of genes are changed, suggesting that the molecular basis of sepsis is at the gene level. This review aims to elucidate the role of circular (circ) RNAs in the pathogenesis of sepsis and sepsis-induced organ damage. In addition, the feasibility of using circRNAs as novel diagnostic biomarkers for sepsis is also discussed, as well as circRNA-based therapy.
METHOD:
This narrative review is based on a literature search using Medline database. Search terms used were "circular RNAs and sepsis", "circRNAs and sepsis", "non-coding RNAs and sepsis", "ncRNAs and sepsis", "circRNAs and septic pathogenesis", "circRNAs and septic model", "circRNAs and septic shock" and "circRNAs, biomarker, and sepsis".
RESULTS:
Numerous studies indicate that circRNAs might exert pivotal roles in regulating the immune system of the host against various pathogens, such as bacteria and viruses. Dysregulation of circRNA expression levels has been confirmed as an early event in sepsis and associated with the inflammatory response, immunosuppression and coagulation dysfunction. This impairment in regulation eventually leads to multiple organ dysfunctions, including of the kidneys, lungs and heart.
CONCLUSION
By investigating the regulation of circRNAs in sepsis, new molecular targets for the diagnosis and intervention of sepsis can be identified. Such an understanding will be important for the development of therapeutic drugs.
Biomarkers
;
Humans
;
RNA, Circular
;
Shock, Septic/genetics*
5.Role of circular RNAs in immune-related diseases.
Weijie ZHAN ; Tao YAN ; Jiawen GAO ; Minkai SONG ; Ting WANG ; Fei LIN ; Haiyu ZHOU ; Li LI ; Chao ZHANG
Journal of Southern Medical University 2022;42(2):163-170
Objective Circular RNAs (circRNAs) are non-coding RNAs (ncRNA) circularized without a 3' polyadenylation [poly-(A)] tail or a 5' cap, resulting in a covalently closed loop structure. circRNAs were first discovered in RNA viruses in the 1970s, but only a small number of circRNAs were discovered at that time due to limitations in traditional polyadenylated transcriptome analyses. With the development of specific biochemical and computational methods, recent studies have shown the presence of abundant circRNAs in eukaryotic transcriptomes. circRNAs play vital roles in many physiological and pathological processes, such as acting as miRNA sponges, binding to RNA-binding proteins (RBPs), acting as transcriptional regulatory factors, and even serving as translation templates. Current evidence has shown that circRNAs can be potentially used as excellent biomarkers for diagnosis, therapeutic effect evaluation, and prognostic assessment of a variety of diseases, and they may also provide effective therapeutic targets due to their stability and tissue and development-stage specificity. This review focuses on the properties of circRNAs and their immune relationship to disease, and explores the role of circRNAs in immune-related diseases and the directions of future research.
Biomarkers
;
MicroRNAs/genetics*
;
RNA, Circular
;
Transcriptome
6.Progress in Research on the Novel Tumor Marker circRNA.
Hao XU ; Meng-Die FANG ; Chao LI ; Chen LIU ; Juan REN ; Yan-Mei ZHANG
Acta Academiae Medicinae Sinicae 2021;43(3):435-444
Circular RNA(circRNA)is a novel type of endogenous non-coding RNA.Most circRNAs act as microRNA(miRNA)sponges to regulate the expression of functional genes.In addition,some circRNAs can be translated and interact with RNA-binding proteins to perform biological functions.The expression of circRNAs is prevalent in tissues and body fluids,and their abnormal expression is related to tumor progression.circRNAs are stable even under the treatment of RNase R because of their circular conformation.As circRNAs have construct stability,wide variety,specific regulation of tumor progression and high expression in body fluids,it is potential for circRNAs to serve as candidate diagnostic,prognostic and therapeutic targets.However,the knowledge about circRNAs remains poor.In addition to the not completely resolved functions and generation mechanisms of circRNAs,the annotations of circRNAs are also waiting for expanding.Here,we review the generation mechanisms,biological functions,and application of circRNAs in tumor research,aiming to provide integrated information for the future research.
Biomarkers, Tumor/genetics*
;
MicroRNAs
;
Prognosis
;
RNA, Circular
7.Research progress on the mechanism of circular RNA involved in stem cell differentiation and its prospect of tissue engineering application.
Journal of Biomedical Engineering 2019;36(6):1038-1042
Circular RNA (circRNA) is a type of single-stranded RNA that binds in a closed loop structure by covalent bond. It is highly expressed and has diverse functions in the eukaryotic transcriptome, and it also has the potential to regulate the process of cell differentiation. Stem cells are important seed cells and common research tools in the field of tissue engineering, which have multi-directional differentiation potential and low immunogenicity. Its clinical application for the treatment of diseases has broad prospects, and the research on their differentiation mechanism has gradually penetrated to the molecular level. A number of studies have shown that circRNA participates in stem cell differentiation and plays a key role through a variety of pathways. This article focuses on the expression changes of circRNA during stem cell differentiation and its research advancement in regulating the differentiation mechanism of various stem cells. The review also prospects its possible role in tissue regeneration and repair, in order to further study the molecular mechanism of circRNA involved in stem cell differentiation and provide ideas for clinical practice of stem cells in biomedical engineering.
Cell Differentiation
;
RNA
;
RNA, Circular
;
Stem Cells
;
Tissue Engineering
;
Transcriptome
8.Research progress on circular RNA in oral squamous cell carcinoma.
Ke-Xin LEI ; He-Tian BAI ; Song-Yue YANG ; Jing LI ; Qian-Ming CHEN
West China Journal of Stomatology 2020;38(4):425-430
Circular RNA, a non-coding RNA that forms a covalently closed continuous loop, exists widely in eukaryotic cells. The biogenesis and biological function of this type of RNA indicate that it can play a crucial role in diseases such as tumors, neural system diseases, and cardiovascular diseases; moreover, this RNA may have great potential use as a biomarker in these diseases. Oral squamous cell carcinoma (OSCC) is a common malignancy in oral surgery that is difficult to cure, metastasizes easily, and has poor prognosis. In this review, we summarize the loop-forming mechanisms and functions of circular RNA and describe the progress of current research in the development of oral cancer.
Carcinoma, Squamous Cell
;
Humans
;
Mouth Neoplasms
;
RNA
;
RNA, Circular
9.Zebrafish's Circular RNAs.
Acta Academiae Medicinae Sinicae 2022;44(4):693-698
Circular RNAs (circRNAs),a group of highly conserved small RNAs,are characterized by a closed circular structure from precursor linear RNA through reverse splicing.They are powerful regulators of the physiological and pathological processes in organisms at different development stages.Zebrafish can be used for the high-throughput drug screening with low cost.Thus,the circRNAs associated with development and inflammation can be mined from zebrafish.Recently,a variety of circRNAs in zebrafish have been identified and characterized.Studies have proved that circRNAs play a vital role in the development and inflammation of zebrafish.The paper summarizes the classification,characteristics,and biological functions of circRNAs,and reviews the research progress in zebrafish's circRNAs.
Animals
;
Inflammation
;
RNA/genetics*
;
RNA, Circular
;
Zebrafish/genetics*