1.Cloning and Screening of Mutant Human Hemoglobin Gene(?_(99) ,?_(82) Lys→Cys)
Hao ZHANG ; Quanli WANG ; Qi FENG
Chinese Journal of Blood Transfusion 1988;0(04):-
Objective:To mutate the codons which code the lysine at loci ? 99 ,? 82 in human hemoglobin gene to the codons which code the cystein.Methods:The objective gene to be mutated was cloned into pAlter Ex2 plasmis and then was mutated with the site directed mutagenesis mediated by oligonucleotide.Results:The sequencing of clones obtained by preliminary screening showed that the anticipated results were reached without any unexpected mutation.Conclusion:The results lay a foundation for the further development of research on expression and purification of recombinated mutant human hemoglobin gene.
2.Serial Expression of Human ?,? globin Genes in Escherichia coli
Hao ZHANG ; Quanli WANG ; Qi FENG
Chinese Journal of Blood Transfusion 1988;0(02):-
Objective To make an attempt to express serialy the human ?,? globin in Escherichia Coli in order to carry out the research on blood substitute based on the genetic recombination of hemoglobin.Methods The routine molecular biology technology was used.Results The serial genetic fragment of ?,? globins containing the hemoglobin was amplified by PCR.The genetic sequencing showed that there was no unexpected mutation.And then,the serial genes were cloned into the pBV220 expression carrier.Undergoing thermal inducement,the expression product could reach about 20% of total bacterial protein.The expression product assumed the form of inclusion body,and it was vertified by Western Blotting.Conclusion This much can lay the solid foundations for further launching the research on expression and pruification of recombinant human hemoglobin genes.
3.Clinical characteristics of hospitalized children with respiratory syncytial virus infection and risk prediction of severe illness during the post-COVID-19 era in Kunming
Haifeng LIU ; Quanli FENG ; Rongwei HUANG ; Tingyun YUAN ; Mingze SUI ; Peilong LI ; Kai LIU ; Feng LI ; Yin LI ; Li JIANG ; Hongmin FU
Chinese Journal of Pediatrics 2024;62(4):323-330
Objective:To compare the epidemiological and clinical characteristics of hospitalized children with respiratory syncytial virus (RSV) infection in Kunming among the pre-and post-COVID-19 era, and to establish a prediction model for severe RSV infection in children during the post-COVID-19 period.Methods:This was a retrospective study. Clinical and laboratory data were collected from 959 children hospitalized with RSV infection in the Department of Pulmonary and Critical Care Medicine at Kunming Children′s Hospital during January to December 2019 and January to December 2023. Patients admitted in 2019 were defined as the pre-COVID-19 group, while those admitted in 2023 were classified as the post-COVID-19 group. Epidemiological and clinical characteristics were compared between the two groups. Subsequently, comparison of the clinical severity among the two groups was performed based on propensity score matching (PSM). Furthermore, the subjects in the post-COVID-19 group were divided into severe and non-severe groups based on clinical severity. Chi-square test and Mann-Whitney U test were used for pairwise comparison between groups, and multivariate Logistic regression was applied for the identification of independent risk factors and construction of the prediction model. The receiver operating characteristic (ROC) curve and calibration curve were employed to evaluate the predictive performance of this model. Results:Among the 959 children hospitalized with RSV infection, there were 555 males and 404 females, with an onset age of 15.4 (7.3, 28.5) months. Of which, there were 331 cases in the pre-COVID-19 group and 628 cases in the post-COVID-19 group. The peak period of RSV hospitalization in the post-COVID-19 group were from May to October 2023, and the monthly number of inpatients for each of these months were as follows: 72 cases (11.5%), 98 cases (15.6%), 128 cases (20.4%), 101 cases (16.1%), 65 cases (10.4%), and 61 cases (9.7%), respectively. After PSM for general data, 267 cases were matched in each group. The proportion of wheezing in the post-COVID-19 group was lower than that in the pre-COVID-19 group (109 cases (40.8%) vs. 161 cases (60.3%), χ2=20.26, P<0.001), while the incidences of fever, tachypnea, seizures, severe case, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein and interleukin-6 levels were all higher than those in the pre-COVID-19 group (146 cases (54.7%) vs. 119 cases (44.6%), 117 cases (43.8%) vs. 89 cases (33.3%), 37 cases (13.9%) vs. 14 cases (5.2%), 69 cases (25.8%) vs. 45 cases (16.9%), 3.6 (1.9, 6.4) vs. 2.3 (1.8, 4.6), 9.9 (7.1, 15.2) vs. 7.8 (4.5, 13.9) mg/L, 20.5 (15.7, 30.4) vs. 17.2 (11.0, 26.9) ng/L, χ2=5.46, 6.36, 11.47, 6.42, Z=4.13, 3.06, 2.96, all P<0.05). There were 252 cases and 107 cases with co-infection in the post-and pre-COVID-19 groups, respectively. The proportion of triple and quadruple infection in the post-COVID-19 group was higher than that in the pre-COVID-19 group (59 cases (23.4%) vs. 13 cases (12.1%), 30 cases (11.9%) vs. 5 cases (4.7%), χ2=5.94, 4.46, both P<0.05). Among the 252 cases with co-infection in post-COVID-19 group, the most prevalent pathogens involving in co-infections, in order, were Mycoplasma pneumoniae 56 cases (22.2%), Influenza A virus 53 cases (21.0%), Rhinovirus 48 cases (19.0%), Parainfluenza virus 35 cases (13.9%), and Adenovirus 28 cases (11.1%).The result of multivariate Logistic regression showed that age ( OR=0.70, 95% CI 0.62-0.78, P<0.001), underlying diseases ( OR=10.03, 95% CI 4.10-24.55, P<0.001), premature birth ( OR=6.78, 95% CI 3.53-13.04, P<0.001), NLR ( OR=1.85, 95% CI 1.09-3.15, P=0.023), and co-infection ( OR=1.28, 95% CI 1.18-1.38, P<0.001) were independently associated with the development of severe RSV infection in the post-COVID-19 group. The ROC curve of the prediction model integrating the above five factors indicated an area under the curve of 0.85 (95% CI 0.80-0.89, P<0.001), with an optimal cutoff of 0.21, a sensitivity of 0.83 and a specificity of 0.80. The calibration curve showed that the predicted probability in this model did not differ significantly from the actual probability ( P=0.319). Conclusions:In the post-COVID-19 era in Kunming, the peak in pediatric hospitalizations for RSV infection was from May to October, with declined incidence of wheezing and increased incidence of fever, tachypnea, seizures, severe cases, and rates of triple and quadruple co-infections. Age, underlying diseases, premature birth, NLR, and co-infection were identified as independent risk factors for severe RSV infection in the post-COVID-19 period. In this study, a risk prediction model for severe pediatric RSV infection was established, which had a good predictive performance.
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.