1.Advances on the pathogenesis of acute necrotizing encephalopathy in children
Chinese Pediatric Emergency Medicine 2024;31(7):527-532
Acute necrotizing encephalopathy(ANE)causes a very high mortality rate in children.However,the pathogenesis of ANE is still unclear,so no better treatment is available.Recent studies have shown that cytokine storms,genetic susceptibility,and mitochondrial dysfunction are key factors in the pathogenesis of ANE.It is now acknowledged that cytokine storms mediated by interleukin-6 and tumor necrosis factor-α are key factors in the pathogenesis of ANE in children.Genetic susceptibility due to genetic mutations plays an indirect role,and children with genetic mutations are more likely to develop ANE after exposure to influenza viruses.Mitochondrial dysfunction interacts with cytokines and gene mutations to jointly promote the development of ANE,but the exact mechanisms are unknown.We hope a deeper understanding of the pathogenesis of ANE will be achieved in the future.Therefore,the therapeutic regimens for ANE will be developed to limit the disease progression and to reduce the rate of disability and mortality in children.
2.Respiratory virus infection and its influence on outcome in children with septic shock
Gang LIU ; Chenmei ZHANG ; Ying LI ; Junyi SUN ; Yibing CHENG ; Yuping CHEN ; Zhihua WANG ; Hong REN ; Chunfeng LIU ; Youpeng JIN ; Sen CHEN ; Xiaomin WANG ; Feng XU ; Xiangzhi XU ; Qiujiao ZHU ; Xiangdie WANG ; Xinhui LIU ; Yue LIU ; Yang HU ; Wei WANG ; Qi AI ; Hongxing DANG ; Hengmiao GAO ; Chaonan FAN ; Suyun QIAN
Chinese Journal of Pediatrics 2024;62(3):211-217
Objective:To investigate respiratory virus infection in children with septic shock in pediatric care units (PICU) in China and its influence on clinical outcomes.Methods:The clinical data of children with septic shock in children′s PICU from January 2018 to December 2019 in 10 Chinese hospitals were retrospectively collected. They were divided into the pre-COVID-19 and post-COVID-19 groups according to the onset of disease, and the characteristics and composition of respiratory virus in the 2 groups were compared. Matching age, malignant underlying diseases, bacteria, fungi and other viruses, a new database was generated using 1∶1 propensity score matching method. The children were divided into the respiratory virus group and non-respiratory virus group according to the presence or absence of respiratory virus infection; their clinical characteristics, diagnosis, and treatment were compared by t-test, rank sum test and Chi-square test. The correlation between respiratory virus infection and the clinical outcomes was analyzed by logistic regression. Results:A total of 1 247 children with septic shock were included in the study, of them 748 were male; the age was 37 (11, 105) months. In the pre-and post-COVID-19 groups, there were 530 and 717 cases of septic shock, respectively; the positive rate of respiratory virus was 14.9% (79 cases) and 9.8% (70 cases); the seasonal distribution of septic shock was 28.9% (153/530) and 25.9% (185/717) in autumn, and 30.3% (161/530) and 28.3% (203/717) in winter, respectively, and the corresponding positive rates of respiratory viruses were 19.6% (30/153) and 15.7% (29/185) in autumn, and 21.1% (34/161) and 15.3% (31/203) in winter, respectively. The positive rates of influenza virus and adenovirus in the post-COVID-19 group were lower than those in the pre-COVID-19 group (2.1% (15/717) vs. 7.5% (40/530), and 0.7% (5/717) vs. 3.2% (17/530), χ2=21.51 and 11.08, respectively; all P<0.05). Rhinovirus virus were higher than those in the pre-Covid-19 group (1.7% (12/717) vs. 0.2% (1/530), χ2=6.51, P=0.011). After propensity score matching, there were 147 cases in both the respiratory virus group and the non-respiratory virus group. Rate of respiratory failure, acute respiratory distress, rate of disseminated coagulation dysfunction, and immunoglobulin usage of the respiratory virus group were higher than those of non-respiratory virus group (77.6% (114/147) vs. 59.2% (87/147), 17.7% (26/147) vs. 4.1% (6/147), 15.6% (25/147) vs. 4.1% (7/147), and 35.4% (52/147) vs. 21.4% (32/147); χ2=11.07, 14.02, 11.06 and 6.67, all P<0.05); and PICU hospitalization of the former was longer than that of the later (7 (3, 16) vs. 3 (1, 7)d, Z=5.01, P<0.001). Univariate logistic regression analysis showed that the presence of respiratory viral infection was associated with respiratory failure, disseminated coagulation dysfunction, the use of mechanical ventilation, and the use of immunoglobulin and anti-respiratory viral drugs ( OR=2.42, 0.22, 0.25, 0.56 and 1.12, all P<0.05). Conclusions:The composition of respiratory virus infection in children with septic shock is different between pre and post-COVID-19. Respiratory viral infection is associated with organ dysfunction in children with septic shock. Decreasing respiratory viral infection through respiratory protection may improve the clinical outcome of these children.
3.A multicenter retrospective study on clinical features and pathogenic composition of septic shock in children
Gang LIU ; Feng XU ; Hong REN ; Chenmei ZHANG ; Ying LI ; Yibing CHENG ; Yuping CHEN ; Hongnian DUAN ; Chunfeng LIU ; Youpeng JIN ; Sen CHEN ; Xiaomin WANG ; Junyi SUN ; Hongxing DANG ; Xiangzhi XU ; Qiujiao ZHU ; Xiangdie WANG ; Xinhui LIU ; Yue LIU ; Yang HU ; Wei WANG ; Qi AI ; Hengmiao GAO ; Chaonan FAN ; Suyun QIAN
Chinese Journal of Pediatrics 2024;62(11):1083-1089
Objective:To investigate the clinical features, pathogen composition, and prognosis of septic shock in pediatric intensive care units (PICU) in China.Methods:A multicenter retrospective cohort study. A retrospective analysis was conducted on the clinical data of children with septic shock from 10 hospitals in China between January 2018 and December 2021. The clinical features, pathogen composition, and outcomes were collected. Patients were categorized into malignant tumor and non-malignant tumor groups, as well as survival and mortality groups. T test, Mann Whitney U test or Chi square test were used respectively for comparing clinical characteristics and prognosis between 2 groups. Multiple Logistic regression was used to identify risk factors for mortality. Results:A total of 1 247 children with septic shock were included, with 748 males (59.9%) and the age of 3.1 (0.9, 8.8) years. The in-patient mortality rate was 23.2% (289 cases). The overall pathogen positive rate was 68.2% (851 cases), with 1 229 pathogens identified. Bacterial accounted for 61.4% (754 strains) and virus for 24.8% (305 strains). Among all bacterium, Gram negative bacteria constituted 64.2% (484 strains), with Pseudomonas aeruginosa and Enterobacter being the most common; Gram positive bacteria comprised 35.8% (270 strains), primarily Streptococcus and Staphylococcus species. Influenza virus (86 strains (28.2%)), Epstein-Barr virus (53 strains (17.4%)), and respiratory syncytial virus (46 strains (17.1%)) were the top three viruses. Children with malignant tumors were older and had higher pediatric risk of mortality (PRISM) Ⅲ score, paediatric sequential organ failure assessment (pSOFA) score (7.9 (4.3, 11.8) vs. 2.3 (0.8, 7.5) years old, 22 (16, 26) vs. 16 (10, 24) points, 10 (5, 14) vs. 8 (4, 12) points, Z=11.32, 0.87, 4.00, all P<0.05), and higher pathogen positive rate, and in-hospital mortality (77.7% (240/309) vs. 65.1% (611/938), 29.7% (92/309) vs. 21.0% (197/938), χ2=16.84, 10.04, both P<0.05) compared to the non-tumor group. In the death group, the score of PRISM Ⅲ, pSOFA (16 (22, 29) vs. 14 (10, 20) points, 8 (12, 15) vs. 6 (3, 9) points, Z=4.92, 11.88, both P<0.05) were all higher, and presence of neoplastic disease, positive rate of pathogen and proportion of invasive mechanical ventilation in death group were also all higher than those in survival group (29.7% (87/289) vs. 23.2% (222/958), 77.8% (225/289) vs. 65.4% (626/958), 73.7% (213/289) vs. 50.6% (485/958), χ2=5.72, 16.03, 49.98, all P<0.05). Multiple Logistic regression showed that PRISM Ⅲ, pSOFA, and malignant tumor were the independent risk factors for mortality ( OR=1.04, 1.09, 0.67, 95% CI 1.01-1.05, 1.04-1.12, 0.47-0.94, all P<0.05). Conclusions:Bacterial infection are predominant in pediatric septic shock, but viral infection are also significant. Children with malignancies are more severe and resource consumptive. The overall mortality rate for pediatric septic shock remains high, and mortality are associated with malignant tumor, PRISM Ⅲ and pSOFA scores.