1.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.c-Met-targeted chimeric antigen receptor T cells inhibit human serous ovarian cancer cell SKOV-3 in vitro.
Na-Na DU ; Yan-Jun ZHANG ; Yan-Qiu LI ; Lu ZHANG ; Ran AN ; Xiang-Cheng ZHEN ; Jing-Ting MIN ; Zheng-Hong LI
Acta Physiologica Sinica 2025;77(2):241-254
The study aimed to construct the second and third generation chimeric antigen receptor T cells (CAR-T) targeting the c-mesenchymal-epithelial transition factor (c-Met) protein, and observe their killing effect on human serous ovarian cancer cell SKOV-3. The expression of MET gene in ovarian serous cystadenocarcinoma, the correlation between MET gene expression and the abundance of immune cell infiltration, and the effect of MET gene expression on the tissue function of ovarian serous cystadenocarcinoma were analyzed by bioinformatics. The expression of c-Met in ovarian cancer tissues and adjacent tissues was detected by immunohistochemical staining. The second and third generation c-Met CAR-T cells, namely c-Met CAR-T(2G/3G), were prepared by lentivirus infection, and the cell subsets and infection efficiency were detected by flow cytometry. Using CD19 CAR-T and activated T cells as control groups and A2780 cells with c-Met negative expression as Non target groups, the kill efficiency on SKOV-3 cells with c-Met positive expression, cytokine release and cell proliferation of c-Met CAR-T(2G/3G) were explored by lactate dehydrogenase (LDH) release, ELISA and CCK-8 respectively. The results showed that MET gene expression was significantly up-regulated in ovarian cancer tissues compared with normal tissues, which was consistent with the immunohistochemistry results. However, in all pathological stages, there was no obvious difference in MET expression and no correlation between MET gene expression and the race and age of ovarian cancer patients. The second generation and third generation c-Met CAR-T cells were successfully constructed. After lentivirus infection, the proportion of CD8+ T cells in c-Met CAR-T(2G) was upregulated, while there was no significant change in the cell subsets of c-Met CAR-T(3G). The LDH release experiment showed that the kill efficiency of c-Met CAR-T(2G/3G) on SKOV-3 increased with the increase of effect-target ratio. When the effect-target ratio was 20:1, the kill efficiency of c-Met CAR-T(2G) reached (42.02 ± 5.17)% (P < 0.05), and the kill efficiency of c-Met CAR-T(3G) reached (51.40 ± 2.71)% (P < 0.05). ELISA results showed that c-Met CAR-T released more cytokine compared to CD19 CAR-T and activated T cells (P < 0.05). Moreover, the cytokine release of c-Met CAR-T(3G) was higher than c-Met CAR-T(2G) (P < 0.01). The CCK-8 results showed that after 48 h, the cell number of c-Met CAR-T(2G) was higher than that of c-Met CAR-T(3G) (P < 0.01). In conclusion, both the second and third generation c-Met CAR-T can target and kill c-Met-positive SKOV-3 cells, with no significant difference. c-Met CAR-T(2G) has stronger proliferative ability, and c-Met CAR-T(3G) releases more cytokines.
Humans
;
Female
;
Ovarian Neoplasms/immunology*
;
Proto-Oncogene Proteins c-met/metabolism*
;
Receptors, Chimeric Antigen/immunology*
;
Cell Line, Tumor
;
Cystadenocarcinoma, Serous/immunology*
;
T-Lymphocytes/immunology*
4.Randomized, double-blind, parallel-controlled, multicenter, equivalence clinical trial of Jiuwei Xifeng Granules(Os Draconis replaced by Ostreae Concha) for treating tic disorder in children.
Qiu-Han CAI ; Cheng-Liang ZHONG ; Si-Yuan HU ; Xin-Min LI ; Zhi-Chun XU ; Hui CHEN ; Ying HUA ; Jun-Hong WANG ; Ji-Hong TANG ; Bing-Xiang MA ; Xiu-Xia WANG ; Ai-Zhen WANG ; Meng-Qing WANG ; Wei ZHANG ; Chun WANG ; Yi-Qun TENG ; Yi-Hui SHAN ; Sheng-Xuan GUO
China Journal of Chinese Materia Medica 2025;50(6):1699-1705
Jiuwei Xifeng Granules have become a Chinese patent medicine in the market. Because the formula contains Os Draconis, a top-level protected fossil of ancient organisms, the formula was to be improved by replacing Os Draconis with Ostreae Concha. To evaluate whether the improved formula has the same effectiveness and safety as the original formula, a randomized, double-blind, parallel-controlled, equivalence clinical trial was conducted. This study enrolled 288 tic disorder(TD) of children and assigned them into two groups in 1∶1. The treatment group and control group took the modified formula and original formula, respectively. The treatment lasted for 6 weeks, and follow-up visits were conducted at weeks 2, 4, and 6. The primary efficacy endpoint was the difference in Yale global tic severity scale(YGTSS)-total tic severity(TTS) score from baseline after 6 weeks of treatment. The results showed that after 6 weeks of treatment, the declines in YGTSS-TSS score showed no statistically significant difference between the two groups. The difference in YGTSS-TSS score(treatment group-control group) and the 95%CI of the full analysis set(FAS) were-0.17[-1.42, 1.08] and those of per-protocol set(PPS) were 0.29[-0.97, 1.56], which were within the equivalence boundary [-3, 3]. The equivalence test was therefore concluded. The two groups showed no significant differences in the secondary efficacy endpoints of effective rate for TD, total score and factor scores of YGTSS, clinical global impressions-severity(CGI-S) score, traditional Chinese medicine(TCM) response rate, or symptom disappearance rate, and thus a complete evidence chain with the primary outcome was formed. A total of 6 adverse reactions were reported, including 4(2.82%) cases in the treatment group and 2(1.41%) cases in the control group, which showed no statistically significant difference between the two groups. No serious suspected unexpected adverse reactions were reported, and no laboratory test results indicated serious clinically significant abnormalities. The results support the replacement of Os Draconis by Ostreae Concha in the original formula, and the efficacy and safety of the modified formula are consistent with those of the original formula.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Humans
;
Male
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Tic Disorders/drug therapy*
;
Treatment Outcome
5.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
6.Study on lightweight plasma recognition algorithm based on depth image perception.
Hanwen ZHANG ; Yu SUN ; Hao JIANG ; Jintian HU ; Gangyin LUO ; Dong LI ; Weijuan CAO ; Xiang QIU
Journal of Biomedical Engineering 2025;42(1):123-131
In the clinical stage, suspected hemolytic plasma may cause hemolysis illness, manifesting as symptoms such as heart failure, severe anemia, etc. Applying a deep learning method to plasma images significantly improves recognition accuracy, so that this paper proposes a plasma quality detection model based on improved "You Only Look Once" 5th version (YOLOv5). Then the model presented in this paper and the evaluation system were introduced into the plasma datasets, and the average accuracy of the final classification reached 98.7%. The results of this paper's experiment were obtained through the combination of several key algorithm modules including omni-dimensional dynamic convolution, pooling with separable kernel attention, residual bi-fusion feature pyramid network, and re-parameterization convolution. The method of this paper obtains the feature information of spatial mapping efficiently, and enhances the average recognition accuracy of plasma quality detection. This paper presents a high-efficiency detection method for plasma images, aiming to provide a practical approach to prevent hemolysis illnesses caused by external factors.
Algorithms
;
Humans
;
Hemolysis
;
Plasma
;
Deep Learning
;
Image Processing, Computer-Assisted/methods*
7.Increased Tertiary Lymphoid Structures are Associated with Exaggerated Lung Tissue Damage in Smokers with Pulmonary Tuberculosis.
Yue ZHANG ; Liang LI ; Zi Kang SHENG ; Ya Fei RAO ; Xiang ZHU ; Yu PANG ; Meng Qiu GAO ; Xiao Yan GAI ; Yong Chang SUN
Biomedical and Environmental Sciences 2025;38(7):810-818
OBJECTIVE:
Cigarette smoking exacerbates the progression of pulmonary tuberculosis (TB). The role of tertiary lymphoid structures (TLS) in chronic lung diseases has gained attention; however, it remains unclear whether smoking-exacerbated lung damage in TB is associated with TLS. This study aimed to analyze the characteristics of pulmonary TLS in smokers with TB and to explore the possible role of TLS in smoking-related lung injury in TB.
METHODS:
Lung tissues from 36 male patients (18 smokers and 18 non-smokers) who underwent surgical resection for pulmonary TB were included in this study. Pathological and immunohistological analyses were conducted to evaluate the quantity of TLS, and chest computed tomography (CT) was used to assess the severity of lung lesions. The correlation between the TLS quantity and TB lesion severity scores was analyzed. The immune cells and chemokines involved in TLS formation were also evaluated and compared between smokers and non-smokers.
RESULTS:
Smoker patients with TB had significantly higher TLS than non-smokers ( P < 0.001). The TLS quantity in both the lung parenchyma and peribronchial regions correlated with TB lesion severity on chest CT (parenchyma: r = 0.5767; peribronchial: r = 0.7373; both P < 0.001). Immunohistochemical analysis showed increased B cells, T cells, and C-X-C motif chemokine ligand 13 (CXCL13) expression in smoker patients with TB ( P < 0.001).
CONCLUSION
Smoker TB patients exhibited increased pulmonary TLS, which was associated with exacerbated lung lesions on chest CT, suggesting that cigarette smoking may exacerbate lung damage by promoting TLS formation.
Humans
;
Male
;
Tuberculosis, Pulmonary/immunology*
;
Middle Aged
;
Tertiary Lymphoid Structures/pathology*
;
Adult
;
Lung/pathology*
;
Smoking/adverse effects*
;
Smokers
;
Aged
;
Tomography, X-Ray Computed
8.Influencing factors of bone nonunion after intramedullary needle operation for tibial fracture
Shao-Wei CHEN ; Wen-Bo LI ; Jie SHI ; Wei-Duo YANG ; Yu-Xiang ZHANG ; Fu-Hui WANG ; Qiu-Ming GAO
Journal of Regional Anatomy and Operative Surgery 2024;33(10):927-930
Intramedullary needle(IMN)has the advantages of high healing rate and low incidence of complications in treatment of tibial fracture,and has become one of the most commonly used fixation methods for the treatment of tibial fracture.However,due to the patient's own factors,fracture location and fracture type,infection and surgical treatment,bone nonunion after IMN still occurs in clinic.Bone nonunion leads to the increase of medical cost and prolonged the hospitalization time of patients,which causes great pain to patients,and also brings great challenges to the treatment of orthopedic surgeons.Therefore,this paper reviews the influencing factors of bone nonunion after IMN for tibial fracture,in order to provide reference for clinical treatment.
9.Significance of IgH Gene Rearrangement in Surveillance of Minimal Residual Disease after Autologous Hematopoietic Stem Cell Trans-plantation in Multiple Myeloma
Ping CHENG ; Jun GUAN ; Ying ZHOU ; Qiu-Xiang WANG ; Lan-Lan WANG ; Ting ZHANG ; Hui CHENG
Journal of Experimental Hematology 2024;32(1):164-170
Objective:To investigate the value of immunoglobulin heavy chain(IgH)gene rearrangement in monitoring minimal residual disease(MRD)in multiple myeloma(MM)received autologous hematopoietic stem cell transplantation(auto-HSCT).Methods:The clinical data of 26 MM patients who received auto-HSCT in the Department of Hematology,Wuhan First Hospital from 2018 to 2022 were collected.IgH rearrangement was detected by multiplex PCR combined with capillary electrophoresis fragment analysis to evaluate minimal residual disease(MRD),and the outcome of the disease was analyzed statistically.Results:Among the 26 MM patients,18 were males and 8 were females,with a median age of 59(41-70)years.The median follow-up time after transplantation was 33(7-52)months.Compared with the IgH rearrangement negative group(n=17),the proportion of CR and sCR of patients with IgH rearrangement positive in bone marrow samples before auto-HSCT at 3 months after transplantation was lower(1/9 vs 14/17),and the duration of remission(DOR)after transplantation was shorter(10.78±4.35 vs 15.88±5.22 months),with statistically significant difference in DOR between the two groups(P<0.05).Compared with IgH rearrangement negative group(n=21),the proportion of CR and sCR of patients with positive IgH rearrangement results from peripheral blood stem cell collection at 3 months after transplantation was lower(0/5 vs 15/21),the duration of remission(DOR)after transplantation was shorter(9.60±4.83 vs 15.19±5.11 months),and the difference in DOR between the two groups was statistically significant(P<0.05).During the follow-up period,5 patients(5/9)with positive IgH rearrangement results in bone marrow specimens died,and all patients with negative IgH rearrangement results survived.Four patients(4/5)with positive IgH rearrangement results by peripheral blood stem cell samples died,while one patient(1/21)with negative IgH rearrangement results died.In both bone marrow and peripheral blood stem cell samples,the survival time of IgH rearrangement-positive patients after transplantation was shorter than that of IgH rearrangement-negative patients(P<0.05).Logistic regression analysis showed that gender,disease stage,the proportion of bone marrow smear plasma cells at initial diagnosis,stem cell mobilization plan,efficacy evaluation before transplantation(≥ CR and<CR),and CD34+cell count had no effect on IgH rearrangement results of stem cell collection(P>0.05).Conclusion:By detecting IgH rearrangement of MM patients receiving auto-HSCT,the depth of MRD can be further evaluated,which has a certain guiding significance for the efficacy and prognosis of the disease.
10.Antiosteoporosis effect of conventional treatment combined with Denosumab after percutaneous kyphoplasty for osteoporotic vertebral compression fractures
Chenyang WU ; Yiping GU ; Xueli QIU ; Huajian SHAN ; Xiang GAO ; Lide TAO ; Yingzi ZHANG ; Bingchen SHAN ; Xiaozhong ZHOU ; Jinyu BAI
Chinese Journal of Trauma 2024;40(9):787-792
Objective:To compare the antiosteoporosis effect of conventional treatment and conventional treatment combined with Denosumab after percutaneous kyphoplasty (PKP) for osteoporotic vertebral compression fractures (OVCF).Methods:A retrospective cohort study was conducted to analyze the clinical data of 211 patients with OVCF admitted to the Second Affiliated Hospital of Soochow University from September 2020 to September 2022. All the patients were female, aged 56-90 years [(71.4±8.1)years]. The bone mineral density T-score of the lumbar spine was (-2.6±1.0)SD before operation. Fracture segments included T 1-T 9 in 45 patients, T 10-L 2 in 146, and L 3-L 5 in 69. Of all, 174 patients were treated with single-segment surgery, 25 with two-segment surgery and 12 with surgery involving three or more segments. According to the wishes of the patients, 107 patients were treated with daily oral administration of calcium and active Vitamin D after PKP (conventional treatment group) and 104 patients with Denosumab combined with the conventional treatment after PKP (Denosumab therapy group). The bone mineral density T-scores of the lumbar spine of the two groups were compared before surgery and at the last follow-up. The visual analogue scale (VAS) and Oswestry disability index (ODI) before surgery, at 3 days, 6 months after surgery, and at the last follow-up were evaluated and the refracture rate after surgery was detected. Possible adverse effects after medication during anti-osteoporosis treatment were observed in two the groups. Results:All the patients were followed up for 12-24 months [(13.5±2.0)months]. Before surgery, the bone mineral density T-score of the lumbar spine was (-2.7±1.1)SD in the Denosumab therapy group and (-2.5±0.8)SD in the conventional treatment group ( P>0.05). At the last follow-up, the bone mineral density T-score of the lumbar spine was (-2.1±1.1)SD in the Denosumab therapy group, significantly higher than (-2.5±0.9)SD in the conventional treatment group ( P<0.05). In the Denosumab therapy group, the bone mineral density T-score of the lumbar spine at the last follow-up was significantly increased compared to that before surgery ( P<0.01), while there was no significant difference in the conventional treatment group ( P<0.05). Before surgery and at 3 days after surgery, the VAS scores and ODI values were (8.5±0.9)points, (2.8±0.8)points, 48.7±4.8 and 25.6±4.0 in the Denosumab therapy group, which was not statistically different from those in the conventional treatment group [(8.5±1.3)points and (2.8±0.9)points, 47.9±7.0 and 25.9±3.7] ( P>0.05). At 6 months after surgery and at the last follow-up, the VAS scores and ODI values were (2.2±0.8)points, (1.7±0.8)points, 24.2±3.6 and 23.2±4.1 in the Denosumab therapy group, significantly lower than those of the conventional treatment group [(2.8±0.9)points, (2.8±1.1)points, 26.4±3.2 and 27.3±4.0] ( P<0.01). The VAS scores at each time point after surgery in both groups decreased significantly compared with those before surgery ( P<0.05). The VAS scores continued to decrease after surgery in the Denosumab therapy group ( P<0.05), while no significant difference was found among those at different time points in the conventional treatment group ( P>0.05). The ODI values at each time point after surgery in both groups significantly decreased compared to those before surgery ( P<0.05). The ODI values continued to decrease after surgery in the Denosumab therapy group ( P<0.05), while in the conventional treatment group, no significant difference was found between those at 6 months after surgery and those at 3 days after surgery ( P>0.05) and they were improved at the last follow-up compared with those at 3 days after surgery ( P<0.05). The refracture rate after surgery was 6.7% (7/104) in the Denosumab therapy group, significantly lower than 16.8% (18/107) in the conventional treatment group ( P<0.05). No serious complications were observed during the antiosteoporosis period in either group. Conclusion:Compared with daily oral administration of Calcium and active Vitamin D after PKP, the conventional treatment combined with Denosumab after PKP can effectively increase the bone density, relieve pain continuously, improve functional restoration, and reduce the risk of refracture in OVCF patients.

Result Analysis
Print
Save
E-mail