1.Study on quality standard and characteristic chromatogram for Hirtula Roses
Chengzhong ZHANG ; Chengjian ZHENG ; Xuhui HE ; Hongrui WANG ; Baokang HUANG ; Qitao BU
Journal of Pharmaceutical Practice and Service 2022;40(5):464-468
Objective To establish the quality standards of Hirtula Roses for the quality control of production, supervision, circulation and application. Methods The moisture content, total ash, ethanol extract content and characteristic chromatogram of Rosa roxburghii Tratt. were determined according to the related determination method in Ⅳ-Part of Chinese Pharmacopeia 2020. Results There should be 6 characteristic peaks in the characteristic chromatogram of Rosa roxburghii Tratt., which should correspond to the retention time of 5 characteristic peaks in the reference chromatogram of the standard herbs, and another peak should correspond to the retention time of the reference chromatogram of isoquercitrin. The moisture content of Rosa roxburghii Tratt. should be less than 14.0%; the total ash content should be less than 5.0%; the ethanol extract content should be more than 20.0%. Conclusion According to the experimental results, the quality standard of Rosa roxburghii Tratt. is conformed to the national requirements of quality standards for traditional Chinese medicine, which could provide a reference for the quality control of Hirtula Roses.
2.Study on quality standard for vinegar-steamed Corydalis rhizoma
Yuan LIN ; Yuchen WEI ; Xiaodong LI ; Qitao BU ; Shihui XU ; Chengzhong ZHANG
Journal of Pharmaceutical Practice 2022;40(1):57-61
Objective To set up the quality standards for vinegar-steamed Corydalis rhizome, which can be used for the quality control of production, supervision, circulation and application of the steam processed Corydalis rhizoma with vinegar. Methods The moisture content, total ash, ethanol extract content and active ingredients of the steam processed Corydalis rhizoma with vinegar were determined according to the related assay method in Part IV of Chinese Pharmacopeia 2015. Results According to the guidelines from the traditional Chinese medicine quality standards and related testing methods, the moisture content of steam processed Corydalis rhizoma with vinegar should be less than 15.0%, the total ash content less than 4.0%, the ethanol extract content more than 11.0%, and the representative component of tetrahydropalmatine more than 0.05%. Conclusion The established process with this study for the quality standard of vinegar-steamed Corydalis rhizoma was conformed to the state requirements for traditional Chinese medicine. It can be used as a reference for the quality standard of vinegar-steamed Corydalis rhizoma.
3.Determination of multi-index components and quality evaluation of Dilong formula granules
Lei LI ; Chengzhong ZHANG ; Hanming ZHANG ; Qitao BU ; Lei ZHANG
Journal of Pharmaceutical Practice 2023;41(9):547-551
Objective To establish the method for the simultaneous determination of hypoxanthine, inosine, guanosine and adenosine in Dilong formula granules by HPLC and compare the fingerprints of Dilong formula granules from different manufacturers by HPLC chromatogram. Methods The contents of hypoxanthine, inosine, guanosine and adenosine were determined by Thermo AcclaimTM120C18 column (4.6 mm×250 mm 5 μm). The mobile phase was acetonitrile-water. Gradient elution with flow rate of 0.6 ml/min was used. Column temperature was 25 ℃. Detection wavelength was 254 nm. 10 batches of samples were tested. The HPLC chromatogram were compared and analyzed by using the similarity Evaluation system of chromatographic fingerprint of traditional Chinese Medicine (version 2012.130723). Results The linear ranges for the detection of hypoxanthine, inosine, guanosine and adenosine showed good linear relationships within their own ranges (r≥0.999 9). The average recoveries were 99.20%~102.98% with RSD of 0.26 %~0.71%. The contents of 4 components in 10 batches of samples were 0.740 0~4.457 4 mg/g, 2.132 3~7.805 0 mg/g, 0.325 4~1.596 1 mg/g, 0.537 2~2.222 9 mg/g respectively. The similarity between HPLC chromatogram and control fingerprints of Dilong formula granules from different manufacturers was greater than 0.91. Conclusion The method could be used to determine the contents of hypoxanthine, inosine, guanosine and adenosine in Dilong formula granule. HPLC fingerprints could be used to evaluation the quality in Dilong formula granule. The similarity of HPLC fingerprints from different manufacturer production of Dilong formula granule is high, but 4 contents in composition are difference.
4.Prediction of characteristic chromatogram for Abri Herba based on network pharmacology and molecular docking
Chengzhong ZHANG ; Xueyan ZHU ; Qitao BU ; Hongrui WANG ; Baokang HUANG
Journal of Pharmaceutical Practice and Service 2024;42(8):350-358
Objective To predict the potential Q-markers of Abri Herba based on network pharmacology and molecular docking and establish a quality control characteristic. Methods The network relationship of “Abri Herba - component - target - pathway” was constructed by using a variety of databases and the method of network pharmacology. The potential Q-markers of Abri Herba were predicted and then the characteristic Chromatogram of Abri Herba was established by high performance liquid chromatography Results Through the network pharmacological prediction, it was found that the components of abrine hypaphorine, schaftoside in Abri Herba were closely associated with the main targets, such as AKT1, STAT3, HIF1A, GRB2, MMP9, which could act on HIF-1, PI3K-Akt, JAK-STAT and other signaling pathways and have good pharmacological activities to be potential Q-markers of Abri Herba. Then HPLC was used to establish the characteristic according to retention time. Conclusion Through network pharmacology and molecular dock-prediction combined with HPLC detection, the characteristic chromatogram was established with the components of abrine hypaphorine, schaftoside as Q-markers, which could control the quality of Abri Herba by combining the components and pharmacological activities.