1.Posterior stabilized knee prosthesis of different types:comparison of intercondylar osteotomy amount
Jianhao WENG ; Jie XU ; Qiqi ZHU ; Ruiqi XUE ; Deng LI ; Zhiqing CAI ; Yulin HUANG ; Ruofan MA
Chinese Journal of Tissue Engineering Research 2015;(39):6233-6239
BACKGROUND:Posterior stabilized femoral knee prosthesis needs additional condyle osteotomy to accommodate the tibial post and femur fossa structures. Intercondylar fossa on both sides connected at the femoral body with concentrated stress is a place easily affecting fractures. Differences in bone mass between different models of different brands did not have specific data, which was not convenient to select prosthesis for clinicians.
OBJECTIVE: To compare the difference of intercondylar osteotomy data among clinical commonly used posterior stabilized knee prostheses (six imported and domestic brands), and to provide basis for the selection and application of the prostheses.
METHODS:The current commonly used posterior stabilized knee prostheses (six imported and domestic brands) were used, including Zimmer NexGen LPS, Stryker Scrorpio NRG Knee-Flexed, Depuy PFC Sigma, Smith & nephew Genesis-2 PS, United-U1 and Wego GKPS. According to the osteotomy template, the osteotomy-surfaces consisting of femoral condyle starting section and cross section, distal section of femoral condyle, and back-oblique section were identified. The corresponding femoral prosthesis diameter lines included condylar ambilateral and anteroposterior diameters, width and depth of femoral intercondylar fossa. The above data were compared and measured.
RESULTS AND CONCLUSION:The six kinds of knee femoral prostheses were different in ratio of ambilateral diameter and anteroposterior diameter, bone resection of intercondylar fossa, and geometry. Imported prostheses carry shorter diameters in femoral starting and cross sections, so it can catch more posterior condylar osteotomy. With increasing prosthesis sizes, the ratio of bone loss causing by width of intercondylar osteotomy is decreased among six brands. In al sizes, Stryker Scrorpio NRG Knee-Flexed catches shorter width of intercondylar osteotomy. Knee prosthesis osteotomy among six brands is different. The result of this study is not sufficient to evaluate the pros and cons between different prostheses, but as reserving bone is concerned, the design of less intercondylar osteoomy catches more advantages.
2.Elevated level of renal xanthine oxidase mRNA transcription after nephropathogenic infectious bronchitis virus infection in growing layers.
Huayuan LIN ; Qiqi HUANG ; Xiaoquan GUO ; Ping LIU ; Weilian LIU ; Yuelong ZOU ; Shuliang ZHU ; Guangfu DENG ; Jun KUANG ; Caiying ZHANG ; Huabin CAO ; Guoliang HU
Journal of Veterinary Science 2015;16(4):423-429
To assess relationships between xanthine oxidase (XOD) and nephropathogenic infectious bronchitis virus (NIBV) infection, 240 growing layers (35 days old) were randomly divided into two groups (infected and control) of 120 chickens each. Each chicken in the control and infected group was intranasally inoculated with 0.2 mL sterile physiological saline and virus, respectively, after which serum antioxidant parameters and renal XOD mRNA expression in growing layers were evaluated at 8, 15 and 22 days post-inoculation (dpi). The results showed that serum glutathione peroxidase and superoxide dismutase activities in the infected group were significantly lower than in the control group at 8 and 15 dpi (p < 0.01), while serum malondialdehyde concentrations were significantly higher (p < 0.01). The serum uric acid was significantly higher than that of the control group at 15 dpi (p < 0.01). In addition, the kidney mRNA transcript level and serum activity of XOD in the infected group was significantly higher than that of the control group at 8, 15 and 22 dpi (p < 0.05). The results indicated that NIBV infection could cause the increases of renal XOD gene transcription and serum XOD activity, leading to hyperuricemia and reduction of antioxidants in the body.
Antioxidants
;
Chickens
;
Glutathione Peroxidase
;
Hyperuricemia
;
Infectious bronchitis virus*
;
Kidney
;
Malondialdehyde
;
RNA, Messenger*
;
Superoxide Dismutase
;
Uric Acid
;
Xanthine Oxidase*
;
Xanthine*
3.Effect and Mechanism of Baoshen Prescription in Alleviating Renal Fibrosis in UUO Mice by Regulating ERK/p38 MAPK Signaling Pathway
Zhen WANG ; Min WANG ; Qiqi DENG ; Qing ZHU ; Jiao GUO
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(21):69-78
ObjectiveTo observe the protective effect of Baoshen prescription against renal fibrosis and explore its underlying mechanism through network pharmacology, molecular docking, and in vivo experiments. MethodAll mice were randomly divided into sham surgery group, model group, low-, medium-, and high-dose Baoshen prescription groups, and a benazepril hydrochloride group. Unilateral ureteral obstruction (UUO) was performed to establish a renal fibrosis model, and the administration of Baoshen prescription at low, medium, and high doses (0.455, 0.91, and 1.82 g·kg-1), and benazepril hydrochloride (1.68 mg·kg-1) or distilled water began on the same day as model preparation. Mice in the model group and the sham surgery group were given an equal volume of distilled water. The intervention was carried out once daily for 14 days. Mouse serum levels of blood urea nitrogen (BUN) and creatinine (Cr) were measured. Hematoxylin-eosin (HE) staining and Masson staining were used to observe renal pathological changes. Western blot and immunohistochemistry were used to assess the expression of fibronectin (FN), α-smooth muscle actin (α-SMA), and E-cadherin, which are related to renal fibrosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression of transforming growth factor-β1 (TGF-β1), tumor necrosis factor-α (TNF-α), NOD-like receptor protein 3 (NLRP3), and monocyte chemoattractant protein-1 (MCP-1) in renal tissues. The mechanism of Baoshen prescription in improving renal fibrosis was explored through network pharmacology, molecular docking, and Western blot experiments. ResultCompared with the sham surgery group, the model group showed significantly increased levels of BUN and Cr (P<0.01). The model group exhibited abnormal renal glomerular morphology, loss of tubular brush borders, tubular dilation, and an enlarged area of blue collagen fibers. Mice in the model group showed significantly elevated levels of FN and α-SMA (P<0.01), significantly decreased expression of E-cadherin (P<0.01), and significantly increased expression of TGF-β1, TNF-α, NLRP3, and MCP-1 mRNA (P<0.05, P<0.01). Compared with the model group, the Baoshen prescription groups showed significantly reduced BUN and Cr levels (P<0.01), alleviated renal pathological damage, improved fibrosis, reduced expression of FN and α-SMA (P<0.01), increased E-cadherin expression (P<0.01), and downregulated mRNA expression of TGF-β1, TNF-α, NLRP3, and MCP-1 (P<0.05, P<0.01). Network pharmacology and molecular docking predicted that Baoshen prescription could potentially improve renal fibrosis through the extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) signaling pathway. Pharmacological research showed that compared with the sham surgery group, the model group exhibited significantly increased expression of phosphorylated (p)-ERK and p-p38 (P<0.05, P<0.01). Compared with the model group, medium- and high-dose Baoshen prescription groups showed significantly downregulated expression of p-ERK and p-p38 proteins (P<0.05, P<0.01). ConclusionBaoshen prescription can effectively improve renal fibrosis induced by UUO in mice, and its mechanism of action may be related to the ERK/p38 MAPK signaling pathway.
4.Improvement effects of Runchang granules on the constipation in mice and its mechanism
Mengqin HUANG ; Xuesong WANG ; Yuhan GAN ; Shiqin LU ; Qiqi DENG ; Qing ZHU ; Jiao GUO
China Pharmacy 2024;35(2):160-165
OBJECTIVE To investigate the improvement effects of Runchang granules on the constipation in mice and its potential mechanism. METHODS The mice were randomly divided into normal control group, model group, Runchang granules low-dose and high-dose groups (5, 10 g/kg), mosapride group (0.003 g/kg, positive control), with 6 mice in each group. The latter 4 groups were given loperamide intragastrically (0.004 g/kg), twice a day, for 3 consecutive days. Normal control group and model group were given purified water intragastrically, and administration groups were given relevant medicine intragastrically for 7 consecutive days. After the last medication, fecal moisture content and intestinal motility of mice were determined, while the structures of colon and ileum, and the secretion of colonic mucus were observed. Protein expressions of tyrosine kinase receptor (c-kit), mucin 2 (MUC2) and stem cell factor (SCF) were determined in colon; meanwhile, the mRNA expression levels of inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)] as well as factors related to promoting intestinal motility [neuronal nitric oxide synthase (nNOS), smooth muscle myosin light chain kinase (smMLCK), 5-hydroxytryptamine 4 receptor (5-HT4R), MUC2, SCF, c-kit] were determined. RESULTS Compared with model group, the fecal water content, intestinal propulsion rate, protein expression of c-kit in colon, relative expressions of MUC2 and SCF protein, and mRNA expressions of factors related to promoting intestinal motility (except for nNOS and SCF in Runchang granules low-dose group) were all increased significantly in Runchang granules low-dose and high-dose groups, and mosapride group (P<0.05 or P<0.01). mRNA expression levels of inflammatory factors were decreased significantly(P<0.05 or P<0.01). Both colon and ileum injuries improved, and the secretion of colon mucus was increased significantly in Runchang granules high-dose group (P<0.01). CONCLUSIONS Runchang granules have laxative effect and can improve constipation in mice, and its mechanism may be related to the promotion of the secretion of colon mucus and MUC2 expression, and the activation of SCF/c-kit signaling pathway.