1.Application of magnetic resonance imaging in patients with type 2 diabetic painful neuropathy
Shuqian WANG ; Cancan HUI ; Yuwei CHENG ; Xiujuan HU ; Xiaorong YIN ; Mengjie CUI ; Qinyi HUANG ; Yangliu YIN ; Yan SUN
Journal of Clinical Medicine in Practice 2024;28(8):16-21
Objective To observe the application effect of magnetic resonance imaging technology in evaluating the brain structure and function of patients with type 2 diabetic painful neuropathy(PDN).Methods Forty patients with type 2 diabetes mellitus hospitalized in our hospital were se-lected as the study objects,and were divided into diabetes mellitus(DM)group(n=12),peripheral neuropathy(DPN)group(n=14)and PDN group(n=14).General clinical biochemical indexes of three groups were analyzed.The structural brain and function of brain area in three groups were com-pared.Results Age,duration of diabetes,systolic blood pressure,diastolic blood pressure,fasting blood glucose(FBG),glycosylated hemoglobin(HbA1c),free fatty acid(FFA),albumin(ALB),creatinine(Cr),uric acid(UA),estimated glomerular filtration rate(eGFR),cystatin C(Cys-C),total cholesterol(TC),triglyceride(TG)of the three groups were compared,high density lipoprotein cholesterol(HDL-C),low density lipoprotein cholesterol(LDL-C),triiodothyronine(T3),thyroxine(T4),thyroid stimulating hormone(TSH),thyroglobulin antibody(TGAb),thyroid peroxidase anti-body(TPO-Ab)and serum calcium(Ca)in the three groups showed no significant differences(P>0.05).Compared with the DM group,the gray matter volume(GMV)in the DPN group was signifi-cantly decreased(P<0.05).Compared with the DM group,amplitude of low frequency fluctuation(ALFF)and fractional amplitude of low frequency fluctuation(fALFF)of left medial superiorfrontal gyrus in the PDN group were significantly decreased(P<0.05).Conclusion Abnormal GMV in the left angular gyrus in DPN patients may be associated with a higher risk of concomitant cognitive impairment.The decrease of ALFF in the right cerebellar vermis and fALFF in the left medial superior frontal gyrus in PDN patients may be related to the pathogenesis of pain.
2.Application of magnetic resonance imaging in patients with type 2 diabetic painful neuropathy
Shuqian WANG ; Cancan HUI ; Yuwei CHENG ; Xiujuan HU ; Xiaorong YIN ; Mengjie CUI ; Qinyi HUANG ; Yangliu YIN ; Yan SUN
Journal of Clinical Medicine in Practice 2024;28(8):16-21
Objective To observe the application effect of magnetic resonance imaging technology in evaluating the brain structure and function of patients with type 2 diabetic painful neuropathy(PDN).Methods Forty patients with type 2 diabetes mellitus hospitalized in our hospital were se-lected as the study objects,and were divided into diabetes mellitus(DM)group(n=12),peripheral neuropathy(DPN)group(n=14)and PDN group(n=14).General clinical biochemical indexes of three groups were analyzed.The structural brain and function of brain area in three groups were com-pared.Results Age,duration of diabetes,systolic blood pressure,diastolic blood pressure,fasting blood glucose(FBG),glycosylated hemoglobin(HbA1c),free fatty acid(FFA),albumin(ALB),creatinine(Cr),uric acid(UA),estimated glomerular filtration rate(eGFR),cystatin C(Cys-C),total cholesterol(TC),triglyceride(TG)of the three groups were compared,high density lipoprotein cholesterol(HDL-C),low density lipoprotein cholesterol(LDL-C),triiodothyronine(T3),thyroxine(T4),thyroid stimulating hormone(TSH),thyroglobulin antibody(TGAb),thyroid peroxidase anti-body(TPO-Ab)and serum calcium(Ca)in the three groups showed no significant differences(P>0.05).Compared with the DM group,the gray matter volume(GMV)in the DPN group was signifi-cantly decreased(P<0.05).Compared with the DM group,amplitude of low frequency fluctuation(ALFF)and fractional amplitude of low frequency fluctuation(fALFF)of left medial superiorfrontal gyrus in the PDN group were significantly decreased(P<0.05).Conclusion Abnormal GMV in the left angular gyrus in DPN patients may be associated with a higher risk of concomitant cognitive impairment.The decrease of ALFF in the right cerebellar vermis and fALFF in the left medial superior frontal gyrus in PDN patients may be related to the pathogenesis of pain.
3.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
4.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
5.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
6.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
7.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
8.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.