1.Situation analysis and discussion for the archival management of special equipment in hospital
Chao ZHOU ; Qinwen TAN ; Jun YIN
China Medical Equipment 2017;14(9):135-137
Objective:To discuss the important significance of the archival management for special equipment of hospital, and to ensure life safety of employee and patients of hospital. Methods: Through summarized practice experience in work, the content, existed problem, the relative management activity and solution of archival management of special equipment of hospital were analyzed and researched.Results: The development of archives management for special equipment of hospital must comply with the development of era. The traditional thinking model of management for equipment archival was transformed. And the advancedtechnique was applied to constantly improve and update the archival management of special equipment of hospital. And then the classification management, standard preventions and working process achieved more standardization, more science and more preciseness.Conclusion:The improved archival management of special equipment can ensure special equipment to play its due role in the diagnosis and treatment of hospital.
2.Effect of Biejia Decoction Pill on aerobic glycolysis in hepatocellular carcinoma by regulating the protein kinase B/mammalian target of rapamycin signaling pathway
Qinwen TAN ; Jingjing HUANG ; Ruixi ZHONG ; Yuanqin DU ; Jian XU ; Jinli NONG ; Yujiao PENG
Journal of Clinical Hepatology 2025;41(2):300-306
ObjectiveTo investigate the inhibitory effect of Biejia Decoction Pill on the proliferation, migration, and aerobic glycolysis of hepatocellular carcinoma (HCC) using cell experiments, as well as related mechanisms. MethodsHuman liver cancer cell line Huh7 was selected, and Sprague-Dawley rats were randomly divided into blank serum group, inhibitor group, and high-, middle-, and low-dose Biejia Decoction Pill groups. Rat serum containing the drug was prepared for the incubation of Huh7 cells. CCK8 assay and scratch assay were used to explore the effect of Biejia Decoction Pill on the proliferation and migration of HCC cells; glycolytic rate-limiting enzymes and metabolites were measured to explore the effect of Biejia Decoction Pill on aerobic glycolysis of liver cancer cells; RT-qPCR and Western blot were used to explore the effect of Biejia Decoction Pill on the mRNA expression, related proteins, and phosphorylation of the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway. A one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test or the Dunnett’s T3 test were used for further comparison between two groups. ResultsCompared with the blank serum group, the Biejia Decoction Pill groups had significant reductions in OD value, migration rate during different periods of time, glycolytic rate-limiting enzymes (hexokinase, phosphofructokinase, pyruvate kinase), and glycolytic metabolites (pyruvate, lactic acid, ATP) (all P<0.05). RT-qPCR results showed that compared with the blank serum group, the high-, middle-, and low-dose Biejia Decoction Pill groups had a significant reduction in the mRNA expression level of mTOR, and the high- and low-dose Biejia Decoction Pill groups had a significant reduction in the mRNA expression level of AKT (all P<0.05). Western blot results showed that compared with the blank serum group, the high-, middle-, and low-dose Biejia Decoction Pill groups had significant reductions in the expression levels of mTOR-related proteins and phosphorylated proteins, and the high- and middle-dose Biejia Decoction Pill groups had significant reductions in the expression levels of AKT-related proteins and phosphorylated proteins (all P<0.05). ConclusionThis study preliminarily verifies that the serum containing Bijia Decoction Pill can inhibit the aerobic glycolysis of human hepatoma Huh7 cells, thereby inhibiting their proliferation and migration, possibly by inhibiting the expression of the proteins related to the AKT/mTOR signaling pathway.
3.Therapeutic effect of retention enema with compound rhubarb decoction on a rat model of minimal hepatic encephalopathy based on bile acid metabolomics
Yuanqin DU ; Meng WANG ; Guochu HUANG ; Chun YAO ; Ruixi ZHONG ; Liangjiang HUANG ; Jian XU ; Jingjing HUANG ; Qinwen TAN ; Dewen MAO
Journal of Clinical Hepatology 2023;39(10):2348-2357
ObjectiveTo investigate the therapeutic effect of rhubarb decoction (RD) retention enema on a rat model of minimal hepatic encephalopathy (MHE) and its mechanism of action based on bile acid (BA) metabolomics. MethodsA total of 55 male Sprague-Dawley rats were randomly divided into blank group (NC group with 10 rats), hepatic encephalopathy group (HE group with 15 rats), MHE group with 15 rats, and MHE+rhubarb decoction treatment group (MHEY group with 15 rats). Intraperitoneal injection of carbon tetrachloride (CCl4) and thioacetamide (TAA) was performed to establish a rat model of MHE or HE, and the rats were sacrificed after 2 weeks of administration. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin (TBil), and total bile acid (TBA) and the concentration of blood ammonia were measured; the colonic contents were collected to measure pH value; liver and brain tissue samples were collected, and HE staining was used to observe the histopathological changes of the liver; the bile was collected, and liquid chromatography-mass spectrometry was used to perform BA-targeted metabolomics analysis. Continuous data were expressed as mean±standard deviation; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the NC group, the HE group and the MHE group had a significant increase in searching platform latency (after modelling and after administration) and a significant reduction in the number of platform crossings (all P<0.05); compared with the MHE group, the MHEY group had a significant reduction in searching platform latency (after administration) and a significant increase in the number of platform crossings, and the HE group had a significant increase in searching platform latency and a significant reduction in the number of platform crossings (all P<0.05). Compared with the NC group, the HE group and the MHE group had significant increases in AST, ALT, ALP, TBil, TBA, blood ammonia, and colon pH value (all P<0.05); compared with the MHE group, the MHEY group had significant reductions in AST, ALT, ALP, TBil, TBA, blood ammonia, and colon pH value (all P<0.05), and the HE group had significant increases in AST, ALT, ALP, TBil, TBA, blood ammonia, and colon pH value (all P<0.05). The MHE group had significantly lower TBA, primary BA, and secondary BA than the NC group (all P<0.05); compared with the MHE group, the HE group had significantly lower TBA and primary BA (all P<0.05), and the MHEY group had significantly higher TBA and primary BA (all P<0.05). Compared with the NC group, the MHE group had significant reductions in GCDCA, GUDCA, GHDCA, TCDCA, TUDCA, GLCA, and TLCA (all P<0.05) and significant increases in γ-MCA, THCA, 7-KDCA, AlloLCA, and α-MCA (all P<0.05), and compared with the MHE group, the MHEY group had significant increases in THDCA, TMCA, TCDCA, TUDCA, and TLCA (all P<0.05). ConclusionRD retention enema can improve liver injury and cognitive function in a rat model of MHE induced by CCl4 and TAA by regulating the enterohepatic circulation of BA, possibly by increasing the synthesis of taurine-binding BA.
4.Effect of amino acid metabolic reprogramming on immune microenvironment of hepatocellular carcinoma
Xiaoli LIU ; Qinwen TAN ; Jian XU ; Huanling CHEN ; Jie YU ; Lu LU ; Mingkan DAI ; Jingjing HUANG ; Hongna HUANG ; Dewen MAO
Journal of Clinical Hepatology 2024;40(12):2531-2537
Tumor immune microenvironment is a local external tumor environment composed of tumor immune cells and the cytokines secreted by these cells, and it plays a regulatory role in the development and progression of tumors. In the treatment of hepatocellular carcinoma, amino acid metabolism and its reprogramming of proliferating cell metabolism have attracted more and more attention, showing potential in regulating the tumor immune microenvironment. Although amino acid metabolic reprogramming is regarded as a novel approach for tumor therapy, its specific mechanism remains unclear in the regulation of tumor immunity in hepatocellular carcinoma. This article discusses the mechanism of action of amino acid metabolism in the tumor immune microenvironment of hepatocellular carcinoma and its application prospect in clinical practice, in order to provide new ideas for immunotherapy for liver cancer.