1.Melatonin Enhances the Chemosensitivity to Gemcitabine in Pancreatic Cancer(PANC-1)Via the Ferroptosis and Autophagy Pathways
Jian CAO ; Qinpeng DONG ; Lian ZENG ; Hengping LI ; Junrui LIU ; Xiaodong SUN ; Qingsong WANG ; Pengchao HU
Herald of Medicine 2024;43(4):502-510
Objective To explore the effect and potential mechanisms of melatonin combined with gemcitabine on the chemosensitivity of human pancreatic cancer cell line PANC-1.Methods Human pancreatic cancer cell line PANC-1 was trea-ted with gemcitabine alone or in combination with melatonin.Cell viability was assessed using CCK-8.Effect of melatonin and gem-citabine alone or in combination on the clonogenic capacity of PANC-1 cells were observed through colony formation experiments.Scratch assays and transwell experiments were conducted to evaluate cell migration ability.Reactive oxygen species(ROS)and mitochondrial membrane point JC-1 assay kit were used to determine reactive oxygen species synthesis and membrane potential levels.Intracellular Fe2+level was measured using ferrous ion fluorescent probe.The protein expression levels of LC3,P62,GPX4 and SLC7A11 in different treatment groups were detected by immunofluorescence and Western blotting.Results CCK-8 results showed that the viability of PANC-1 cells was inhibited by gemcitabine alone after 48 h and 72 h of treatment in a time-and dose-dependent manner.The cell viability of gemcitabine combined with melatonin group was significantly lower than that of gemcitabine group,and the cell viability decreased with the increase of melatonin concentration.Scratch assays,transwell experiments,and plate colony formation assay results demonstrated that the proliferation and migration of cells in the gemcitabine combined with the me-latonin group were significantly inhibited compared with the gemcitabine group.The levels of reactive oxygen species and Fe2+in PANC-1 in gemcitabine combined with the melatonin group were higher than those in the gemcitabine group,and the mitochondri-al membrane potential was significantly decreased(P<0.01).Western blotting and immunofluorescence results showed that the ra-tio of autophagy-related protein LC3-Ⅱ/LC3-Ⅰ in gemcitabine combined with the melatonin group was lower than that in the gem-citabine group,and the expression of P62 was up-regulated,and the expression of anti-iron death-related protein GPX4 and SLC7A11 was significantly inhibited(P<0.05),suggesting that melatonin combined with gemcitabine can inhibit autophagy and promote ferroptosis in PANC-1 cells.Conclusion Melatonin enhances the chemosensitivity of pancreatic cancer cell PANC-1 to gemcitabine by inhibiting autophagy and promoting ferroptosis of tumor cells.
2.Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease.
Changgeng SONG ; Yan ZHAO ; Jiajia ZHANG ; Ziyi DONG ; Xin KANG ; Yuqi PAN ; Jinle DU ; Yiting GAO ; Haifeng ZHANG ; Ye XI ; Hui DING ; Fang KUANG ; Wenting WANG ; Ceng LUO ; Zhengping ZHANG ; Qinpeng ZHAO ; Jiazhou YANG ; Wen JIANG ; Shengxi WU ; Fang GAO
Neuroscience Bulletin 2023;39(11):1683-1702
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Mice
;
Animals
;
Epilepsy, Temporal Lobe/pathology*
;
Parvalbumins/metabolism*
;
Parkinson Disease/pathology*
;
Neurons/metabolism*
;
Interneurons/physiology*
;
Disease Models, Animal
;
Brain/pathology*
3.Correction: Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease.
Changgeng SONG ; Yan ZHAO ; Jiajia ZHANG ; Ziyi DONG ; Xin KANG ; Yuqi PAN ; Jinle DU ; Yiting GAO ; Haifeng ZHANG ; Ye XI ; Hui DING ; Fang KUANG ; Wenting WANG ; Ceng LUO ; Zhengping ZHANG ; Qinpeng ZHAO ; Jiazhou YANG ; Wen JIANG ; Shengxi WU ; Fang GAO
Neuroscience Bulletin 2023;39(11):1747-1748