1.Mechanisms of alternative splicing in regulating plant flowering: a review.
Huanhuan LU ; Qinlin DENG ; Mengdan WU ; Zhimin WANG ; Dayong WEI ; Hebing WANG ; Huafeng XIANG ; Hongcheng ZHANG ; Qinglin TANG
Chinese Journal of Biotechnology 2021;37(9):2991-3004
Flowering is a critical transitional stage during plant growth and development, and is closely related to seed production and crop yield. The flowering transition is regulated by complex genetic networks, whereas many flowering-related genes generate multiple transcripts through alternative splicing to regulate flowering time. This paper summarizes the molecular mechanisms of alternative splicing in regulating plant flowering from several perspectives, future research directions are also envisioned.
Alternative Splicing/genetics*
;
Arabidopsis/metabolism*
;
Arabidopsis Proteins/genetics*
;
Flowers/genetics*
2.Molecular mechanisms of RPD3 family members in regulating plant development and environmental responses.
Qinlin DENG ; Huanhuan LU ; Mengdan WU ; Maolin RAN ; Zhimin WANG ; Dayong WEI ; Qinglin TANG
Chinese Journal of Biotechnology 2021;37(8):2645-2657
Lysine acetylation is one of the major post-translational modifications and plays critical roles in regulating gene expression and protein function. Histone deacetylases (HDACs) are responsible for the removal of acetyl groups from the lysines of both histone and non-histone proteins. The RPD3 family is the most widely studied HDACs. This article summarizes the regulatory mechanisms of Arabidopsis RPD3 family in several growth and development processes, which provide a reference for studying the mechanisms of RPD3 family members in regulating plant development. Moreover, this review may provide ideas and clues for exploring the functions of other members of HDACs family.
Arabidopsis/metabolism*
;
Histone Deacetylases/metabolism*
;
Histones
;
Plant Development/genetics*
3.Expression of Brassica juncea BjuWRKY75 and its interactions with flowering integrator BjuFT.
Junjie FENG ; Yuanda WANG ; Qinlin DENG ; Haitao ZHAI ; Xu YE ; Dayong WEI ; Zhimin WANG ; Qinglin TANG
Chinese Journal of Biotechnology 2022;38(8):3029-3040
Brassica juncea is a yearly or biennial vegetable in Brassica of Cruciferae. The yield and quality of its product organs are affected by flowering time. WRKY proteins family can respond to biological and abiotic stresses, developmental regulation and signal transduction. WRKY75 is an important member of WRKY family which can regulate flowering, but the flowering regulation mechanism in B. juncea has not been reported. In this study, a gene BjuWRKY75 in B. juncea was cloned, and the encoded-protein belonged to the group Ⅱ of WRKY protein with highly conserved domain. BjuWRKY75 had the highest homology with BriWRKY75 of Brassica nigra. The relative expression level of BjuWRKY75 in flowers was significantly higher than that in leaves and stems, and it was expressed stably in leaves. BjuWRKY75 protein was localized in the nucleus and interacted with the promoter of the flowering integrator BjuFT, which contained the W-box response element for the interaction between protein and DNA. Thus, it could transcriptionally activate the expression of the downstream genes. The overexpression of BjuWRKY75 in Arabidopsis led to earlier flowering significantly. In conclusion, BjuWRKY75 could directly target the promoter of BjuFT and accelerate flowering. These results may facilitate further study on the regulation of flowering molecules of BjuWRKY75.
Arabidopsis/genetics*
;
Flowers/genetics*
;
Gene Expression Regulation, Plant
;
Mustard Plant/genetics*
;
Plant Proteins/metabolism*
;
Promoter Regions, Genetic